Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Механизмы повреждения клеточных структур




I. Липидный механизм

  1. Свободнорадикальное и перикисное окисление липидов

Свободные радикалы – это атомы (или молекулы) с неспаренными электронами на внешних атомных или молекулярных орбитах, отличающиеся высокой реакционной способностью.

Два электрона одной орбитали (спаренные) имеют противоположные спины (направление вращения электрона вокруг собственной оси, которое создает магнитное поле с параллельным, или антипараллельным вектором относительно магнитного поля Земли), а отсюда и нулевой общий магнитный момент.

Неспаренный электрон придает атому (или содержащей его молекуле) магнитный момент, который предопределяет его химическую реакционную способность.

Неспаренные электроны стремятся ликвидировать феномен неспаренности двумя путями.

· Взаимодействием с другими свободнорадикальными атомами (или молекулами) с образованием химически инертного продукта;

· «Выдергиванием» неспаренного электрона с противоположным спином из внешней оболочки свободных или связанных атомов. Объектом такого воздействия являются переходные металлы, богатые неспаренными электронами, в результате взаимодействия радикал становится химически инертным (тушится), а металл изменяет заряд. Но свободные радикалы способны «выдергивать» электроны и из биоорганических соединений, которые превращаются в свободнорадикальные (перикисные) соединения с патологическим нарушением биохимических процессов.

 

Свободные радикалы постоянно образуются в организме и попадают в него из окружающей среды (все виды излучения).

Свободные радикалы не бывают «хорошими» или «плохими». Они необходимы организму для выполнения ряда функции, например в дыхательной цепочке, но оказывают повреждающее действие при увеличении их количества.

В процессе биологического окисления образуются супероксидный радикал О2Ÿ и гидроксидный радикал ŸОН (свободные радикалы), о ксид азота NОŸ (преимущественно участвует в регуляции сосудистого тонуса) и перекись водорода Н2О2 (последняя не является свободным радикалом, но в результате менталлокатализа превращается в гидроксильный радикал). Н2О2 легко разрушается каталазой.

супероксидный радикал О2Ÿ генерируется лейкоцитами при фагоцитозе, образуется в митохондриях в процессе окислительных реакций, в тканях при метаболической трансформации катехоламинов, синтезе простогландинов. Некоторые реакции сопровождаются образованием гидроксильного радикала ŸОН и пероксида водорода Н2О2 (необходимых киллерам и фагоцитам).

Кислородные радикалы обеспечивают свободнорадикальное окисление субстратов, основными из которых являются полиненасыщенные жирные кислоты клеточных мембран. Это влияет на полярность гидрофобных углеводородных хвостов жирных кислот, которые образуют липидный бислой мембраны. В результате изменяется структура мембраны, ее проницаемость и ионный транспорт. В физиологических условиях это один из способов регуляции функции клетки.

Оксид азота NO· легко проходит через мембранные структуры и в качестве посредника обуславливает расслабление гладких мышц стенки сосудов, ЖКТ, бронхов и других полых органов, выполняет роль нейротрансмиттера, а также антигрегантную и адгезивную функцию. Особое внимание заслуживает противомикробное и противопаразитарное действие NO·. Именно этим объяс­няется генерация больших количеств оксида азота клетка­ми эпителия бронхов, а также иммунной системы (лейкоци­ты, макрофаги). Чужерод­ные липополисахариды в указанных клетках часто одно­временно активируют и мембранную НАДФН-оксидазу, генерирующую супероксид O2·¾, который нейтрализует NO· с образованием пероксинитрита (ONOO-). При физиологическом рН превращается в слабую пероксинитрокислоту.

Цитотоксическое действие пероксинитрита объясняется возможностью его распада на NO2- и OH·. Гидроксильный радикал способен запускать окисление липидов, белков и нуклеиновых кислот.

 

Физиологическое значение свободных радикалов заключается в регуляции генетической программы и апоптоза, образовании катехоламинов, стероидных гормонов и др., детоксикации ксенобиотиков, медиаторов и гормонов, разрушении фагоцитированных структур в фагоцитах.

ПОЛ – физиологический процесс регуляции клеточной активности, однако при избытке свободных радикалов приводит к гибели клетки.

Патологический эффект в организме возникает при избыточной продукции свободных радикалов, или при дефиците антиоксидантных факторов.

При избытке образования свободных радикалов структуры клетки разрушаются, и она гибнет.

Антиоксидантная система подразделяется на неэнзимную и энзимную.

a) Неэнзимные антиоксиданты являются донорами электронов для радикальных молекул, превращают их в инертные молекулы, но являются «двуликими» и сами становятся свободнорадикальными. Выполняют лишь буферную роль в антиоксидантной защите организма.

· водорастворимые соединения (аскорбиновая кислота, мочевая кислота, глютатион);

· жирорастворимые соединения (a-токоферол, ретинол).

· спирты и тиолы (цистеин, дитиотретиол, маннитол, тиомочевина, этанол и др.)

b) Ферментные антиоксиданты способны выступать в качестве доноров или акцепторов свободных электронов, являются основной защитой организма от оксидативного стресса.

· супероксиддисмутаза нейтрализует свободнорадикальный кислород с образованием перекиси водорода и атомарного кислорода;

· каталаза разлагает перекись водорода;

· глутатионпероксидаза в цитозоле клеток разлагает перекись водорода.

c) Липидные антиоксидантные «ловушки» (перехват свободных радикалов) – это холестерол клеточных мембран, гидрофильные головки фосфолипидов клеточных мембран.

 

  1. Активация фосфолипаз ионами Са++, что приводит к расщеплению структурных элементов мембран и образованию лизофосфолипидов (детергентов).

 

  1. Накопление свободных жирных кислот, обладающих детергентными свойствами.

 

II. Кальциевые механизмы

Существует 2 вида Ca++ насосов: Са++ АТФаза и Na+/Ca++ АТФаза.

Если Са++ появляется в цитоплазме, то начинается активация ферментов. В зависимости от происхождения клетки, Са++ может активировать разные функции: в мышечных – сокращение, в нервных – возбуждение, в тучных клетках – выброс гистамина и т. д.

Накопление Са++ в цитоплазме мышечной клетки приводит к активации ферментов: кальмодулина (сокращение мышечного волокна), протеинкиназ (синтез белка и, следовательно гипертрофия мышц).

Но, если Са++ чуть больше, начинается активация фосфолипаз (расщепление фосфолипидов мембран, причем мембран как клеточной, происходит аутолиз клетки, так и мембран органелл, например, лизосом, лизосомальный аутолиз клетки, повреждение мембран митохондрий с последующим выходом из них Са++ (митохондрии – аккумулируют Са++).

Активации лизосомальных ферментов способствует изменение pH в кислую сторону (аналогично перевариванию в ЖКТ).

Основные проявления повреждения клеток:

1. Дистрофия – это нарушение обмена веществ в клетке (трофики), сопровождающееся нарушением функции и структуры клетки и ведущее к ее гибели.

Основные механизмы дистрофии:

    • синтез аномальных веществ в клетке (например, β-амилоид при болезни Альцгеймера);
    • трансформация - избыточное превращение общих исходных продуктов обмена веществ (жиры, белки, углеводы) в продукты одного вида обмена веществ (углеводы);
    • декомпозиция (фанероз) – накопление в тканях продуктов нарушенного обмена веществ вследствие распада структур клетки и межклеточного вещества;
    • инфильтрация (например, отложение холестерина в стенке сосуда).

 

2. Дисплазия – это нарушение развития клеток, проявляющееся стойким нарушением их структуры и функции, ведущее к нарушению их жизнедеятельности. Вызывают дисплазии различные факторы, повреждающие клеточный геном. В отличие от дистрофий дисплазии необратимы. Основной механизм дисплазий – нарушение дифференцировки клеток.

 

3. Некроз – это необратимая гибель клеток.

Стадии умирания клетки:

    • Паранекроз – сходное с гибелью обратимое изменение обмена веществ и функционирования клетки под влиянием патогенного фактора.
    • Некробиоз – необратимое состояние между жизнью и смертью, агония клетки.
    • Некроз – гибель клетки.
    • Аутолиз – саморазрушение клеточных структур и клетки в целом. Механизмы аутолиза – гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом (основной) и свободнорадикальное и перекисное окисление липидов.

Виды некроза:

a) Морфологически:

· коагуляционный (сухой) – преобладание процессов уплотнения, свертывания и обезвоживания, развивается в тканях, богатых белками (сердце, мышцы, печень, почки).

· колликвационный (влажный) – разжижение, размягчение с образованием кист и полостей, развивается в тканях, богатых жидкостью (мозг).

b) Анатомически:

· инфаркт – это некроз в результате прекращения кровоснабжения органа (или ткани).

· гангрена – вид некроза тканей, соприкасающихся с внешней средой (сухая и влажная).

· секвестр – отделение омертвевшего участка от живых тканей (например, при остеолмиелите).

 

4. Апоптоз – запрограммированная, активная (энергозатратная) форма гибели клеток, проявляющаяся уменьшением ее размеров, конденсацией и фрагментацией хроматина, уплотнением мембраны без выхода содержимого в окружающую среду.

Считается, что термин апоптоз предложил древне­римский врач Гален. В процессе наблюдения за при­родой он заметил, что если надломить ветку дерева, с которой уже начали опадать листья, то листопад пре­кращается, а листья, хотя и меняют цвет, остаются на ветке. То есть опадание листьев, в отличие от их омертвения на сломанной ветке, - физиологический процесс, преднамеренное самоубийство листьев.

Се­годня термин апоптоз, буквально означающий «опадание листьев», применяется к физиологическому явлению - самоубийству клеток, т.е. генетически за­программированной гибели клеток. Другими словами существует особая генетическая программа, реализа­ция которой при определенных условиях приводит клетку к гибели. В современную науку использование термина апоптоз введено Керром (J.F.R. Kerr) в 1972 году.

Апоптозом управляют особые гены: стимулирует апоптоз ген р53 (ему принадлежит важнейшая роль в противоопухолевой защите), ингибирует апоптоз – ген bcl2 (относится к протоонкогенам из-за его способности предотвращать апоптоз и сохранять клетки с мутациями).

Апоптоз противопоставляется другой распространенной форме гибели клеток – некрозу.

 

Рис. 2.2. Сравнительное изображение развития некроза и апоптоза клеток.

 

Апоптоз проявляется уменьшением объема клетки в противоположность ее набуханию при некрозе; конденсацией и фрагментацией хроматина; снижением трансмембранного потенциала митохондрий; уплотнением цитоплазматической мембраны без выхода содержимого в окружающую среду. В результате фагоцитоза, которому клетки подвергаются уже в процессе апоптоза, их содержимое не выделяется в окружающую среду, как это бывает при некрозе, когда вокруг гибнущих клеток скапливаются активные внутриклеточные компоненты, включая энзимы, закисляется среда, что способствует гибели других клеток и развитию очага воспаления. Апоптоз поражает индивидуальные клетки и практически не отражается на их окружении.

Стадии апоптоза:

I. Индукторная. Сигналами к развитию апоптоза (индукторами апоптоза) являются внеклеточные (антигены, гормоны (например, кортикостероиды), цитокины, УФ- и g-излучение, нагревание) и внутриклеточные (повреждение хромосом и дефицит сигналов) факторы. К универсальным индукторам относятся также нарушение осмотического равновесия, высокое содержание Ca++ и NO. Индукторы апоптоза в свою очередь запускают ферменты (каспазы), которые регулируют весь процесс апоптоза. Эта стадия подразумевает прохождение неких контрольных точек, в которых клетке предоставляется выбор между индукцией и блокадой апоптоза, т. е. данная стадия еще является обратимой. После их прохождения клетка вступает в следующую необратимую фазу апоптоза.

II. Эффекторная – в клетке происходит снижение трансмембранного потенциала митохондрий, развивается массовый протеолиз и расщепление ядерной ДНК с формированием крупных фрагментов (олигонуклеосом и нуклеосом. Такая фрагментация считается биохимическим маркером апоптоза, а на ее выявлении основаны современные методы диагностики апоптоза.

III. Деградация клетки.

Роль апоптоза:

· Поддержание постоянства численности клеток (своего рода контроль перенаселения.

· Определение формы организма и его частей (например, наблюдается интенсивный апоптоз нервных клеток в процессе формирования коры у зародыша на 12-23-й неделях беременности).

· Обеспечение правильного соотношения численности клеток различных типов (быстрая атрофия гормон-зависимых тканей при снижении концентрации соответствующих гормонов, например, в женских половых органах в течение менструального цикла, или в простате при снижении концентрации андрогенов).

· Удаление генетически дефектных клеток.

· Селекция лимфоцитов и регуляция иммунных процессов.

 

 

Рис. 2.3. Схема клеточного цикла.

 

Ингибиторы апоптоза:

  • мутация Р53;
  • теломераза;
  • интерферон j.

 

Воздействие радиации вызывает (через свободно-радикальное повреждение) мутации и изменение в структуре ДНК. В результате – клетка остается в G1-фазе митоза (если она входит в S - фазу, то происходит апоптоз). Мутационная форма белка Р53 не обладает способностью останавливать клеточный цикл, это явление наблюдается у опухолевых клеток

Теломераза – фермент, обеспечивающий восстановление длины теломерного (концевого) участка хромосомной ДНК. Каждое деление делает хромосому короче на 10-20 теломерных фрагментов. Что дает возможность произвести только 50 делении (лимит Хайфлика).

У человека теломераза функционирует только в эмбриональных клетках и семенниках, вырабатывающих сперматозоиды в течение всей жизни. В опухолевых клетках теломераза активна.

Патология, обусловленная нарушением апоптоза:

A) Ослабление апоптоза

· аутоиммунные процессы (семейный аутоиммунный лимфопролиферативный синдром, системная красная волчанка, ревматоидный артрит);

· злокачественные опухоли (лимфома Беркитта, лейкозы, солидные опухоли).

b) Ускорение апоптоза

· врожденные уродства (волчья пасть, заячья губа и др.);

· болезни крови (миелодисплазии, анемии (железо- фолио- В12 – дефицитные), тромбоцитопения, нейтропения).

· инфекционные заболевания (СПИД, бактериальный сепсис и др.);

· дистрофические заболевания нервной системы (боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия);

· другие заболевания (инфаркт миокарда, токсические гепатиты).

 

IV. Компенсаторные механизмы клетки при повреждении.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1742 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2412 - | 2331 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.