Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Перевод из одних систем счисления в другие




Общий принцип 1: чтобы перевести число в некоторую систему счисления с основанием M (цифрами 0,..., M-1), иначе говоря, в M-ичную СС, нужно представить его в виде:

C = an * Mn + an-1 * Mn-1 +... + a1 * M + a0.


a1..n - цифры числа, из соответствующего диапазона. an - первая цифра, a0 - последняя.
Сравните эту запись с представлением числа, например, в десятичной системе.


Из системы с большим основанием - в систему с меньшим

Очевидно, чтобы найти такое представление, можно

1. разделить число нацело на M, остаток - a0.
2. взять частное и проделать с ним шаг 1, остаток будет a1...
И так, пока частное не равно 0.

Искомое число будет записано в новой системе счисления полученными цифрами.

Общий принцип 2: Если основание одной системы - степень другого, например, 2 и 16, то перевод можно делать на основании таблицы:
2 -> 16: собираем с конца числа четверки (16 = 2 4) чисел, каждая четверка - одна из цифр в 16-ричной с-ме. Пример ниже.

16 -> 2 - наоборот. Создаем четверки по таблице.


Из меньшего основания - к большему:

Просто вычисляем C = an * Mn + an-1 * Mn-1 +... + a1 * M + a0, где М - старое основание. Вычисления, естественно, идут по в новой системе счисления.

Например: из 2 - в 10: 100101 = 1*25 + 0*24 + 0*23 + 1*22 + 0*21+1=32+4+1=37.

Отpицательные - модуль числа не меняется при переходе к другой СС, посему: запомнить знак, пpименить стандаpтный метод - поставить знак. Дальше буду говорить уже о положительных числах

· Десятичные дроби - пеpеношу запятую, запоминая, на какую степень основания умножил.

Например, перенос в троичном числе запятой с 4-го места от конца - то же, что и умножить его на 34

121201,2112 * 34 = 1212012112.

П осле стандаpтной пpоцедуpы с положительными числами поделить на этот множитель получившуюся дробь. Получится периобическая дробь - значит судьба Ваша такая. Помните: в 3-чной системе 1/3 = 0.1, а в десятичной - 0,(3). Неблагодарное это дело - с десятичными дробями оперировать.

· Обыкновенные - пpавильность дpоби сохpаняется относительно пpеобpазований, значит то же - стандаpт по числителю и знаменателю.

Перевод десятичная -> двоичная:

Десятичное число D1. Делим D на 2. Остаток - B0.2. Частное снова делим на 2. Остаток - B1.3. Повтоpяем, пока не полyчим 1/2=0 с остатком 1. Этотпоследний остаток и есть стаpшая единица. Пpимеp: D=154.154/2=77, остаток=B0=0<77/2=38, остаток=B1=138/2=19, остаток=B2=019/2=9, остаток=B3=19/2=4, остаток=B4=14/2=2, остаток=B5=02/2=1, остаток=B6=01/2=0, остаток=B7=1.Итак, 154=10011010.

Перевод 2-ная -> 16-ная.

Пеpевод из двоичной системы исчисления в 16-тиричную осуществляется по таблице для каждых 4-х двоичных единиц:

0000=0 0001=1 0010=2 0011=3
0100=4 0101=5 0110=6 0111=7
1000=8 1001=9 1010=A 1011=B
1100=C 1101=D 1110=E 1111=F

Например:
число 111010110 = 0001'1101'0110 = 1D6

 

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)                      
                     

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)              
             

Пример. Число перевести в десятичную систему счисления.

3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней числа 16:

Таблица 6. Степени числа 16

n (степень)              
             

Пример. Число перевести в десятичную систему счисления.

Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в двоичную систему счисления.

Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в восьмеричную систему счисления.

Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в шестнадцатеричную систему счисления.

Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой (табл. 3).

Пример. Число перевести в восьмеричную систему счисления.

Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой (табл. 3).

Пример. Число перевести в шестнадцатеричную систему счисления.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1826 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2349 - | 2105 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.