Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы защиты от внешних воздействий




1. Влияние окружающей температуры может быть снижено путем:

термостатирования всего ЭЛА или наиболее чувствительных к температуре составляющих;

использования термокомпенсации;

повышения тепловой инерции ЭЛА за счет введения теплоизоляции.

В качестве защитных материалов используют материалы, обладающие низкой теплопроводностью и малым удельным весом, эффективность может быть повышена фольгированием наружной поверхности.

Термическая прочность. Требования к термической прочности предусматривают возможность перегрузок отдельных элементов оборудования и устанавливают допустимые превышения перегревов над температурой окружающей среды при нормальном атмосферном давлении и температуре 50 градусов по Цельсию. Значения перегрузок устанавливаются в зависимости от рода, назначения и характера работы оборудования.

Провода и коммутационная аппаратура, работающие длительно (2 ч), должны выдерживать двукратные перегрузки в течение 5 мин.; электродвигатели и аппаратура, работающие в повторно-кратковременном режиме, – 100 % нагрузку при удлиненном вдвое рабочем периоде; генераторы – 150 % нагрузку в течение 5 мин.; 200 % нагрузку – 5 с; лампы, фары – напряжение 115 % от номинального в течение 5 мин. (лампы) и 1 мин. (фары).

Все испытания на нагрев производятся вначале на номинальной нагрузке в номинальном режиме до установившегося теплового состояния, после чего дается перегрузочный режим.

Влияние влажности.

Повышение влагостойкости достигается:

применением влагоустойчивых материалов (изоляция металлов, пластмасс),

применением покрытий и пропиток,

введением в конструкцию влагопоглощающих устройств,

герметизацией (обеспечивают либо методом опрессования пластмассой, либо заключением в специальный металлический или пластмассовый корпус).

3. Влагозащита одновременно защищает от пыли и грибкообразований плесени.

4. Влияние механических нагрузок (механическая прочность).

Для реализации этого требования особое внимание уделяется вибрационной устойчивости. Крепежные элементы агрегатов электрооборудования, например болты, гайки, шпильки и т.п., должны быть надежно законтрены, а элементы малой жесткости амортизированы. Для защиты от вибраций на виброамортизаторах монтируются различные чувствительные элементы ЭЛА, например электронное оборудование, угольные регуляторы и др. При пайке проводников применяется дополнительное механическое крепление в виде обжима, загибов и пропуска провода в отверстия. Посадки пакетов электротехнической стали на валы электрических машин, особенно средней и большой мощности, производятся с помощью шпонок. Осевое закрепление пакетов осуществляется гайками или стопорными пружинными кольцами, насаженными на вал с большим натягом [1].

На этапе проектирования элементов электрооборудования все необходимые расчеты ведутся исходя из воздействия максимальных ускорений. С учетом действия нагрузок всех видов выбираются натяги в неподвижных (прессовых) посадках деталей.

Все элементы и агрегаты ЭЛА после изготовления проходят специальные испытания на вибрационную прочность. Некоторые объекты, установленные на двигателе, например генераторы, подвергаются испытаниям непосредственно на двигателе. Коммутационная аппаратура испытывается на многократные включения.

5. Химическая и радиационная стойкость. Требования, предъявляемые к оборудованию, предусматривают уменьшение коррозии металлических частей под влиянием влаги и соли (для морской авиации), паров керосина, масла, гидравлической жидкости и т.п. При этом следует применять материалы, устойчивые к коррозии, и принимать меры, исключающие контакт элементов ЭЛА с агрессивной окружающей средой.

Повышение радиационной стойкости связано с использованием радиационно-стойких смазочных материалов и покрытий, подшипников, поверхности скольжения которых разделены газовой прослойкой, совершенствованием технологии производства полупроводниковых приборов. Последнее предусматривает создание надежной изоляции, использование керамических элементов, применение схемотехнических методов фототоковой компенсации, рациональный выбор конструкции корпуса и использование многослойных экранов.

6.Электрическая прочность определяется требованиями, предъявляемыми к изоляции (толщине и ее качеству), а также допустимым расстоянием между токоведущими частями и металлической массой как по поверхности изоляции, так и по воздуху.

Критерием электрической прочности является обеспечение следующих значений напряжения: для проводов – 300 В, для генераторов – 1000 В, для электродвигателей, реле, коммутационной аппаратуры, электрифицированного вооружения, установок обогрева и т.п. – 500 В. Еще одним критерием электрической прочности является обеспечение сопротивления изоляции: для отдельных частей и элементов оборудования, а также для бортовой сети оно не должно быть меньше 1 МОм, а для высоковольтных цепей с питанием от преобразователей – не менее 5 МОм.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 859 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2508 - | 2258 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.