Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Погрешности электроизмерительных приборов




 

По способу выражения в измерительных приборах различают абсолютную, относительную и приведённую погрешности. Первые две погрешности аналогичны рассмотренным выше:

- абсолютная погрешность прибора Δ=Хп –Х. Здесь - показание прибора, Х- истинное значение измеряемой величины;

- относительная погрешность определяется как.

 

Поскольку часто истинное значение неизвестно, то часто используют более удобную запись:

 

 

- приведённая погрешность - есть выраженное в процентах отношение абсолютной погрешности к нормирующему значению L (выбор L регламентируется ГОСТ 13600-68):

.

Для приборов с нулевой отметкой на краю или вне шкалы нормирующее значение L равно конечному значению диапазона измерений Хк. Если нулевая отметка находится посредине шкалы, то L равно арифметической сумме конечных значений шкалы без учёта знака.

У реальных приборов зависимость абсолютной погрешности от измеряемой величены Х может быть представлена некоторой полосой неопределённости. Эта полоса обусловлена случайной погрешностью и изменением характеристик приборов в результате действия влияющих величин и процессов старения.

Поэтому значение абсолютной погрешности, ограничивают двумя прямыми, симметричными относительно оси абсцисс, расстояние между которыми увеличивается с ростом измеряемой величины Х.

 

 

Рис.2

Уравнение прямой 1 можно записать в виде:

,

где а – предельное значение аддитивной погрешности, bx – предельное значение мультипликативной погрешности.

Абсолютные значения аддитивной погрешности не зависят от измеряемой величины Х, а мультипликативные прямо пропорциональны величине Х.

Источники аддитивной погрешности - это трение в опорах, неточность отсчёта, шум, наводки, вибрации. От этой погрешности зависит наименьшее значение величины, которое может быть измерено прибором. Причины мультипликативной погрешности - влияние внешних факторов и старение элементов, узлов приборов.

Предельное значение относительной погрешности прибора , связано с предельным значением абсолютной погрешности зависимостью:

Согласно ГОСТ в соответствии со значением приведённой погрешности средствам измерений присваиваются классы точности.

Класс точности – это обобщённая характеристика прибора, определяемая пределами допускаемых основных и дополнительных погрешностей.

У приборов, аддитивная погрешность которых резко преобладает над мультипликативной, все значения погрешностей оказываются в пределах двух прямых параллельных оси Х (прямые 2) рис.2.

В результате допускаемая абсолютная и приведённые погрешности прибора оказываются постоянными в любой точке его шкалы. У таких приборов класс точности равен максимальному значению приведенной погрешности, выраженной в процентах и округленной до ближайшего большего значения из ряда чисел: ; ; ; ; ; ; , где Например, классы точности на амперметры и вольтметры, установленные ГОСТ 8711-78: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0 и 5,0.

У приборов, класс точности которых выражается одним числом, основная приведённая погрешность, выраженная в %, не превышает значения, соответствующего класса точности.

Класс точности приборов, у которых аддитивная и мультипликативная составляющие основной погрешности соизмеримы, обозначается в виде двух чисел разделённых косой чертой, например 0,1/0,05. К приборам, класс точности которых выражается дробью относятся цифровые приборы, мосты сравнения и т.д.

Предельное значение основной относительной погрешности прибора, выраженное в процентах, в этом случае может быть определено по формуле:

,% или ,% (1)

Здесь Ак - конечное значение диапазона измерений (предел измерений), Ах- измеренное значение.

 

Случайные погрешности

 

Случайные погрешности – это погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Их нельзя исключить опытным путём, т.к. они происходят от одновременного влияния на результат измерения ряда величин случайного характера (внешних воздействий). Кроме этого, в случайную погрешность входят и случайные погрешности средств измерений.

Уменьшение влияния случайных погрешностей на результат измерений достигается путём усреднения многократных измерений величины в одинаковых условиях.

Рис.3  
 
σ2 › σ1  
Из теории вероятностей известно, что наиболее полно случайные величины описываются законами распределения вероятностей. В практике электрических измерений одним из наиболее распространённых законов является нормальный закон (распределение Гаусса).

 

 

 

 

 

Функция распределения для нормального закона (рис.3) выражается зависимостью

где - функция распределения плотности вероятности случайной погрешности ,

σ- среднеквадратическое отклонение,

D=σ2 – дисперсия, характеризующая рассеивание случайной погрешности относительно центра распределения.

График показывает, что чем меньше σ, тем чаще встречаются погрешности малой величины (тем точнее выполнены измерения).

В общем случае вероятность появления погрешности со значением от до определяется площадью заштрихованного участка на рис.3 и может быть вычислена по формуле:

.

Следует учесть, что эта функция нормирована, т.е.

,

поэтому кривые σ1 и σ2 всегда имеют форму, обеспечивающую равенство 1 площадей под этими кривыми.

Интервал от до называется доверительным, а соответствующая вероятность – доверительной вероятностью. Следовательно, доверительный интервал - это интервал, в пределах которого находится искомая величина с вероятностью, называемой доверительной.

Если ввести нормированную случайную величину , то правая часть преобразуется в функцию Лапласа, часто называемую интегралом вероятности:

.

Он табулирован и его график представлен на рис.4:

 
 

 


Если задана некоторая вероятность , то найдя можно определить погрешность по формуле . Эта погрешность и будет определять величину доверительного интервала.

Табулированные значения функции показывают, что вероятность появления погрешности Δ в интервале от до составляет 0,9973. Вероятность появления погрешности большей чем ± равна (1 - 0,9973) = 0,0027 ≈ 1/370. Это означает, что только одна из 370 погрешностей (т.е. примерно 0,3% их числа) будет больше по абсолютному значению .

Погрешность ± принимают за максимальную погрешность. Погрешности больше , считаются промахами и при обработке результатов измерений не учитываются (отбрасываются). Часто это условие называют "законом 3σ", т.е. если выполняется условие

Δi max ≤ 3σ, (2)

то считается, что в этом случае в результатах измерений промахов нет (с вероятностью 0,3%).

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 555 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.