Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Балансировочные режимы и манёвры




Теперь вернёмся к замкнутым системам. Устойчиво управляемая система может находиться либо в балансировочном режиме, либо в режиме манёвра. Один и тот же, реально протекающий режим может быть интерпретирован и как балансировочный, если соотноситься с одним вектором целей, и как режим манёвра, если соотноситься с другим вектором целей.

В векторе целей балансировочного режима контрольные параметры неизменны во времени. В реальном устойчивом балансировочном режиме вектор состояния колеблется относительно неизменного положения в подпространстве контрольных параметров, а свободные параметры могут при этом изменяться по-всякому.

Понятие «балансировочный режим» несколько сродни понятию «равновесие», но шире его, поскольку обыденное сознание воспринимает «равновесие» статично — как неподвижную неизменность во времени. В балансировочном же режиме во времени неизменен процесс колебаний системы относительно точки «равновесия», координаты которой неизменны во времени: система проходит через неё, но не может пребывать в ней, хотя бы потому, что отклонения от неё — ниже порога чувствительности средств измерения или управление негибко, обладает конечным быстродействием и не может вовремя остановить и зафиксировать объект в точке равновесия.

Случай, когда вектор целей изменяться в процессе управления, будучи функцией времени либо функцией матрицы возможностей течения процесса управления и субъективно избранной алгоритмики управления процессом, о чём речь шла в разделе 6.5, — является манёвром. В векторе целей режима манёвра изменяется хотя бы один из контрольных параметров. При рассмотрении реального процесса устойчивого манёвра в подпространстве контрольных параметров вектор состояния отслеживает с некоторой ошибкой управления изменение вектора целей (содержащего только контрольные параметры). На свободные параметры, как и в случае балансировочного режима, ограничения не накладываются.

Режим маневрирования, в котором производные по времени контрольных изменяющихся параметров постоянны (в пределах допустимой ошибки управления), называется установившимся манёвром. Установившийся манёвр сам является балансировочным режимом, из вектора целей которого исключены изменяющиеся в процессе манёвра контрольные параметры.

Если идти от реально протекающего процесса управления и строить по предположению (т.е. гипотетически) вектор целей субъекта, реально управляющего процессом (это называется «идентификация» вектора целей), то один и тот же режим можно интерпретировать в качестве балансировочного режима или устойчивого колебательного манёвра. Так, при отнесении к вектору целей только параметров, колеблющихся относительно средних значений (в зависимости от ограничений на ошибки управления), режим интерпретируется как балансировочный режим; при отнесении к вектору целей хотя бы одного из произвольно меняющихся параметров, режим интерпретируется как манёвр.

Точно также один и тот же режим можно воспринимать как устойчивый, исходя из одних ограничений на вектор ошибки; и как неустойчивый, исходя из более строгих ограничений на вектор ошибки; в этом предложении хорошо видно проявление возможности троякого понимания устойчивости: 1) по ограниченности колебательного процесса отклонений от некоего идеального режима, 2) по убыванию отклонений после снятия возмущающего воздействия и 3) по предсказуемости.

Простейший пример балансировочного режима — езда на автомобиле по прямой дороге с постоянной скоростью. Все стрелочки на приборной панели, кроме расхода бензина, подрагивают около установившихся положений; но рулём всё же «шевелить» надо, поскольку неровности дороги, боковой ветер, разное давление в шинах, люфты в подвесках и рулевом приводе норовят увести автомобиль в сторону.

Манёвры в свою очередь разделяются на слабые и сильные. Это разделение не отражает эффективности манёвра. Понятие слабого манёвра связано с балансировочными режимами. Перевод системы из одного балансировочного режима в другой балансировочный режим — это один из видов манёвра. Некоторые замкнутые системы обладают таким свойством, что, если этот перевод осуществлять достаточно медленно, то вектор состояния системы в процессе манёвра не будет сильно отличаться от вектора состояния в исходном и (или) конечном балансировочном режиме за исключением изменяющихся в ходе манёвра контрольных параметров и некоторых свободных параметров, информационно связанных с контрольными.

Если на корабле положить руль на борт на 3 — 4 градуса, то корабль начнёт описывать круг очень большого диаметра и будет происходить изменение угла курса. Если это делается вне видимости берегов и в пасмурную погоду, то большинство пассажиров даже не заметят манёвра изменения курса. Если же на полном ходу быстроходного корабля (узлов[238] 25 — 30) резко положить руль на борт градусов на 20 — 30, то палуба в процессе перекладки руля дёрнется под ногами в сторону, обратную направлению перекладки руля; потом начнётся вполне ощутимое вестибулярным аппаратом человека изменение курса, сопровождающееся вполне видимым креном до 10 и более градусов.

Хотя в обоих случаях изменение курса может быть одинаковым, гидродинамические характеристики корабля в первом случае слабого манёвра не будут сильно отличаться от режима прямолинейного движения; во втором случае, когда корабль начнёт входить в циркуляцию диаметром не более 4 — 5 длин корпуса, — будет падать скорость хода, появится значительная по величине поперечная составляющая скорости обтекания корпуса и крен, а общая картина обтекания корпуса и гидродинамические характеристики будут качественно отличаться от имевших место при прямолинейном движении или слабых манёврах.

Разделение манёвров на сильные и слабые в ряде случаев позволяет существенно упростить моделирование поведения замкнутой системы в процессе слабого маневрирования без потери качества результатов моделирования. Поскольку выбор меры качества всегда субъективен, то и разделение манёвров на сильные и слабые определяется субъективизмом в оценке качества моделирования и управления. Но, если такое разделение возможно, то слабому маневру можно подыскать аналогичный ему (в ранее указанном смысле) балансировочный режим.

Понятие о теориях подобия

В практической деятельности — в создании новой техники, в организации управления теми или иными процессами — типичны ситуации, в которых по параметрам какой-то одной замкнутой системы надо судить о процессах и параметрах какой-то другой замкнутой системы, которая от первой может отличаться:

· либо своими размерами при однокачественности природы обеих систем (т.е. при однокачественности физических носителей процессов в обеих системах и во внешней среде),

· либо природой.

И то и другое нуждается в пояснении.

Что касается различий однокачественных по своей природе систем, то жизнь полна так называемых «масштабных эффектов».

Масштабные эффекты проявляются в том, что при изменении всех или только некоторых размеров однокачественных по своей природе систем значения параметров, характеризующих процессы в самой системе и во взаимодействии её со средой, изменяются не пропорционально масштабу изменения соответствующих размеров исходной систем.

При этом изменение исходных размеров системы может сопровождаться изменением каких-то параметров, характеризующих поведение новой системы, как в большую, так и в меньшую сторону. В некоторых случаях плавный переход по шкале масштаба к иным размерам системы может сопровождаться ступенчатым увеличением или уменьшением параметров, характеризующих её поведение. В других случаях какие-то параметры, характеризующие поведение системы, оказываются безразличными к изменению масштаба по отношению к исходным размерам. Всё это в природе обусловлено тем, что подавляющее большинство параметров, которыми характеризуется система и её поведение, обусловлены не одним, а множеством факторов (т.е. в математических моделях большинство параметров — функции не одного, а многих аргументов, причём функции нелинейные), каждый из которых по разному влияет на изменение характеристических параметров системы при переходе к иному масштабу.

Наличие масштабных эффектов в жизни при оценке однокачественных систем и процессов, протекающих в них и с ними связанных внешних процессов, приводит к вопросу о том: Как пересчитать характеристики одной системы, процессов в ней и с нею связанных внешних процессов к масштабу другой системы, обладающей иными размерами, для того, чтобы можно было судить о достоинствах и недостатках, о соответствии каждой из систем задачам, на неё возлагаемым, о качестве управления (решения) этих задач каждой из сопоставляемых друг с другом систем?

Нахождение ответа на этот вопрос в каждой прикладной отрасли деятельности, в которой он встаёт, — одна из задач соответствующей теории подобия.

Но это — не единственная задача теории подобия. Например, известно, что одними и теми же математическими моделями с приемлемой для практики точностью могут быть описаны процессы, имеющие разную природу. В терминологии триединства материи-информации-ме­ры это означает, что процессы, аналогичные друг другу по своим информационно-алгорит­ми­ческим характеристикам, опираются на разные по своей природе материальные носители.

При этом оказывается, что хотя люди могут построить математические модели тех или иных процессов, но достигнутый уровень развития математики и вычислительных средств позволяет решить далеко не все задачи, которые можно поставить. Тем не менее, свойство информационно-алго­рит­ми­чес­кой аналогичности процессов, протекающих на разных материальных носителях, в случаях, когда выявлена такого рода аналогичность, позволяет не решать задачи методами математики или путём экспериментирования на моделях, идентичных по своему материальному носителю интересующему нас объекту, а построить модель-аналог на основе иных материальных носителей и решать задачи на её основе.

В 1940‑е — 1950‑е гг. этот подход в истории развития техники выразился в создании так называемых «аналоговых вычислительных машин», которые однако ничего не вычисляли, а моделировали на основе протекающих в них процессов, какие-то иные процессы.

Так было выявлено, что дифференциальные уравнения, описывающие динамику самолёта в полёте, могут быть идентичны уравнениям, описывающим процессы в электронных схемах. В тот период времени не было вычислительных средств для того, чтобы решать такие математические задачи с приемлемой для практики точностью, но была возможность построения электронных схем, процессы в которых по своим информационно-алгоритмическим характеристикам были аналогичны параметрам, характеризующим динамику самолёта в полёте. И многие задачи по обеспечению желательной управляемости летательных аппаратов в ходе проектирования новой авиационной техники были решены на основе создания и варьирования параметров динамически подобных летательным аппаратам электронных схем, на которых и проводились эксперименты по моделированию управляемости будущих летательных аппаратов.

Соответственно тому, что показано на этом примере, вторая задача построения теорий подобия — определять, какие процессы, разнокачественные по природе их материальных носителей, могут быть уподоблены друг другу в аспекте информационно-алгоритмической аналогичности, и соответственно — как соотнести друг с другом реальные параметры, характеризующие физически различные процессы, и значения этих параметров, свойственные модели и объекту.

Т.е. теория подобия — не некий атрибут ДОТУ, обладающий универсальностью своего применения в решении любых практических задач, а один из возможных подразделов всякой прикладной отрасли Науки. Теорий подобия, ориентированных на решение проблем соответствующих отраслей практической деятельности, в научной субкультуре человечества может быть множество — по числу отраслей, в которых востребованы решения задач теории подобия.

Благодаря тому, что в авиации и судостроении развиты соответствующие потребностям этих отраслей теории подобия, в целом успешно решаются задачи выбора и оптимизации аэро- и гидродинамической компоновки летательных аппаратов и кораблей, выявляются и разрешаются проблемы обеспечения их прочности в процессе эксплуатации.

Тем не менее, есть и некоторые общие принципы, которые выражаются в теориях подобия, развитых в составе прикладных отраслей науки, включая достаточно общую теорию управления в её приложениях.

Поскольку понятие о времени и его измерение связано с выбором эталонной частоты, то в качестве эталонных частот могут быть взяты и собственные частоты колебаний объектов управления, замкнутых систем, процессов взаимодействия замкнутых систем и окружающей среды. Это приводит к понятию динамических подобных (частично или полностью) объектов, систем и процессов, для которых процессы (балансировочные режимы и манёвры), отнесённые ко времени, основанном на сходственных собственных частотах, в некотором смысле идентичны. Сопровождение слова «иден­­тичность» эпитетом «некоторая» обусловлено тем, что подобие может осуществляться на разных физических носителях информационно-алго­рит­ми­ческих процессов (управления), на разных уподоблениях друг другу параметров подобных систем.

Уподобление — обезразмеривание, т.е. лишение реальных физических и информационных параметров их размерности (метров, килограммов, секунд и т.п.) отнесением их к каким-либо значениям характеристик замкнутой системы и среды, обладающим той же размерностью (метрами, килограммами, секундами и т.п.). В результате появляются безразмерные единицы измерения сходственных в некотором смысле параметров у сопоставляемых замкнутых систем, одинаково характерные для каждой из них вне зависимости от того, на каких материальных носителях они реализованы. Это свойство общевселенской меры лежит в основе моделирования на одних физических носителях процессов, реально протекающих на других физических носителях (аналоговые вычислительные машины); и в основе информационного (чисто теоретического) моделирования, в котором важна информационная модель, а её физический носитель интереса вообще не представляет (любой алгоритм, предписывающий какую-либо последовательность действий, по своему существу независим от его материального носителя).

Анализ течения подобного моделирующего процесса может протекать в более высокочастотном диапазоне, чем течение реального подобного моделируемого процесса: это даёт возможность заглянуть в будущие варианты развития моделируемого процесса, что является основой решения задач управления вообще и задачи о предсказуемости поведения, в частности.

Примеры такого рода моделирования, как уже было сказано выше, — все аэродинамические и прочностные эксперименты и расчёты в авиации, судостроении и космонавтике.

Моделирование высокочастотного процесса в низкочастотном диапазоне позволяет отследить причинно-следственные связи, которые обычно ускользают от наблюдателя при взгляде на скоротечный реальный процесс. Примером такого рода является скоростная и сверхскоростная киносъемка (более 105 кадров в секунду) и замедленная (по сравнению с реальностью) проекция ленты, что позволяет решать многие технические и биологические (медицинские) проблемы.

Многие проблемы в жизни общества неразрешимы вследствие неразвитости в тех отраслях науки, которые претендуют на работу с ними, адекватных теорий подобия.

Примером тому — экономическая наука современной цивилизации, которая при колоссальном расходовании природных и трудовых ресурсов не в состоянии обеспечить благоденствие всех, кто согласен честно своей трудовой деятельностью поддерживать жизнь общества и цивилизации в целом. Это обстоятельство — объективный показатель неадекватности так называемой «экономической науки» реально протекающим экономическим процессам и потребностям подавляющего большинства людей.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 379 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2392 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.