Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Перестановки, сочетания и размещения без повторений




Задачи по комбинаторике. Примеры решений

Автор: Емелин Александр

http://www.mathprofi.ru/zadachi_po_kombinatorike_primery_reshenij.html

Для вычисления вероятностей событий необходимо разобраться с основными понятиями комбинаторики. Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью ТВ). Нам достаточно небольшой доли теоретических знаний, которые мы рассмотрим ниже, и познакомимся с решением типовых комбинаторных задач.

В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

Предварительно введем новое важное для нас понятие: факториал.

Факториал – это произведение всех натуральных чисел от 1 до п.

Обозначают п! ичитают: п — факториал.

 

п! = 1 · 2 · 3 · 4 · …· (n – 2) · (n – 1) · n 1! = 1 0! = 1

 

 

Заметим,

1! = 1, 1! = 1,
2! = 1 · 2 = 2, 2! = 1! · 2 = 2,
3! = 1 · 2 · 3 = 6, 3! = 2! · 3 = 2 · 3 = 6,
4! = 1 · 2 · 3 · 4 = 24, 4! = 3! · 4 = 24,
5! = 1 · 2 · 3 · 4 · 5 = 720 5! = 4! · 5 = 24 · 5 = 720,
…. ….
п! = 1 · 2 · 3 · 4 · …· (n – 2) · (n – 1) · n п! = (n – 1)! · n

 

 

Например, 6! = 720, 7! = 5040. Объясните, как получены данные равенства.

 

Вычислим значение выражения: . Объясните, как выполнены вычисления.

Теперь перейдем к комбинациям. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение).

Перестановки, сочетания и размещения без повторений

Начнём с хвоста заголовка – что значит «без повторений»? Это значит, что в данной статье будем рассматривать множества, которые состоят из различных объектов. Представьте, что перед вами на столе лежат яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый: сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого: 6 комбинаций или 6 перестановок.

Хорошо, здесь не составило особого труда перечислить все возможные случаи. Но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт! Попробуйте их составить самостоятельно. Получится 24 различных комбинаций. А чтобы составить все комбинации из 5 фруктов, то потребуется достаточно много времени, чтобы их записать.

Пожалуйста, откройте справочный материал Основные формулы комбинаторики (методичку удобно распечатать) и в пункте №2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить Р3 = 3! = 6 способами.

Вопрос второй: сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний:

Запись в данном случае следует понимать так: «число способов, которыми можно выбрать один фрукт из трёх»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:
Запись понимается аналогично: «число способов, которыми можно выбрать два фрукта из трёх»

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки: способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:

+ + = 3 + 3 + 1 = 7 способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей, уже кое о чём догадались. Но о смысле знака «плюс» позже.

Вопрос третий: сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

В данном случае работает формула количества размещений:
Она отличается от формулы тем, что учитывает не только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждой возможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей.

Пожалуйста, внимательно прочитайте пункт №2 методички Основные формулы комбинаторики и постарайтесь хорошо уяснить разницу между перестановками, сочетаниями и размещениями. В простейших случаях можно пересчитать все возможные комбинации вручную, но чаще всего это становится неподъемной задачей, именно поэтому и нужно понимать смысл формул.

Остановимся на каждом виде комбинаций подробнее:

Перестановки

Перестановками называют комбинации, состоящие из одних и тех же n различных объектов и отличающиеся только порядком их расположения. Количество всех возможных перестановок выражается формулой Рn = n!.

Отличительной особенностью перестановок является то, что в каждой из них участвует ВСЁ множество, то есть, все n объектов.

Задача 1

Сколькими способами можно рассадить 5 человек за столом?

Решение: используем формулу количества перестановок: Р5 = 5! = 1 × 2 × 3 × 4 × 5 = 120.

Ответ: 120 способами

Невероятно, но факт. Обратите внимание, что здесь не имеет значения круглый ли стол, квадратный, или вообще все люди сели встали, легли на скамейку вдоль одной стены – важно лишь количество объектов и их взаимное расположение. Помимо перестановок людей, встречаются задача о перестановках различных книг на полке, перестановка карточек с разными картинками, перестановке карт одной масти, перестановке чашек в серванте и т.д.

Задача 2

Сколько четырёхзначных чисел можно составить из четырёх карточек с цифрами 0, 5, 7, 9?

Для того чтобы составить четырёхзначное число нужно задействовать все четыре карточки (цифры на которых различны! ), и это очень важная предпосылка для применения формулы Рn = n!. Очевидно, что, переставляя карточки, мы будем получать различные четырёхзначные числа. … Стоп, а всё ли тут в порядке?

Хорошенько подумайте над задачей! Вообще, это характерная черта комбинаторных и вероятностных задач – в них НУЖНО ДУМАТЬ. И зачастую думать по-житейски, как, например, в разборе вступительного примера с фруктами.

Решение и ответ в конце урока.

Сочетания

В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому, в данная ниже формулировка будет не особо рациональной, но, надеюсь, доходчивой.

Сочетаниями называют различные комбинации из m объектов, которые выбраны из множества n различных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание – это уникальная выборка из m элементов, в которой не важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле:

Задача 3

В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение: прежде всего, снова обращаю внимание на то, что по логике условия детали считаются различными – даже если они на самом деле однотипны и визуально одинаковы
(в этом случае их можно, например, пронумеровать)
.

В задаче речь идёт о выборке из 4-х деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

Здесь, конечно же, не нужно ворочать огромные числа 11! = 39916800, 15! = 1307674368000.
В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае 11!) и сокращаем на него дробь. Для этого числитель следует представить в виде 15! = 11! × 12 × 13 × 14 × 15. Распишу очень подробно:

1365 способами можно взять 4 детали из ящика.

Ещё раз: что это значит? Это значит, что из набора 15-ти различных деталей можно составить одну тысячу триста шестьдесят пять уникальных сочетания 4-х деталей. То есть, каждая такая комбинация из 4-х деталей будет отличаться от других комбинаций хотя бы одной деталью.

Ответ: 1365 способов

Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения: , , , .

Применительно к разобранной задаче:

– единственным способом можно взять ни одной детали;

– способами можно взять 1 деталь (любую из 15-ти);

– способами можно взять 14 деталей (при этом какая-то одна из 15-ти останется в ящике);
– единственным способом можно взять все пятнадцать деталей.

Задача 4

Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Это пример для самостоятельного решения. Чем приятны многие комбинаторные задачи, так это краткостью – главное, разобраться в сути.

Размещения

Или «продвинутые» сочетания. Размещениями называют различные комбинации из k объектов, которые выбраны из множества n различных объектов, и которые отличаются друг от друга как составом объектов в выборке, так и их порядком. Количество размещений рассчитывается по формуле = n (n – 1) (n – 1)… (n – k +1).

Данная формула может быть преобразована и записана и в таком виде: =

Задача 5

Боря, Дима и Володя сели играть в «очко». Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Решение: ситуация похожа на предыдущую задачу, но отличается тем, что здесь важно не только то, какие три карты будут извлечены из колоды, но и то, КАК они будут распределены между игроками. По формуле размещений: = 36 × 35 × 34 = 42840 способами можно раздать 3 карты игрокам.

Есть и другая схема решения, которая, с моей точки зрения, даже понятнее. Рассмотрим ее.

Первый шаг: способами можно извлечь 3 карты из колоды.

Второй шаг: теперь давайте рассмотрим, какую-нибудь одну из семи тысяч ста сорока комбинаций, например: король пик (КП), девятка червей (9Ч), семерка червей (7Ч). Выражаясь комбинаторной терминологией, эти 3 карты можно «переставить» между Борей, Димой и Володей Р3 = 3! = 6 способами:

КП, 9Ч, 7Ч;
КП, 7Ч, 9Ч;
9Ч, КП, 7Ч;
9Ч, 7Ч, КП;
7Ч, КП, 9Ч;
7Ч, 9Ч, КП.

Такое количество перестановок имеется для любого уникального набора из 3-х карт. А таких наборов, не забываем, мы насчитали . Не нужно быть профессором, чтобы понять, что найденное количество сочетаний следует умножить на шесть и тогда мы получим количество всех способов раздачи по одной карте трем игрокам. Итак: способами можно сдать по одной карте 3-м игрокам. Этот результат равен тому, который получили, решая задачу по формуле размещения.

По существу, получилась наглядная проверка формулы . Конкретный смысл этой формуле более подробно рассмотрен в конце решения задачи 8.

Ответ: 42840 способов.

Задача 6

В студенческой группе 23 человека. Сколькими способами можно выбрать старосту и его заместителя?

Задача о «размещении» должностей в коллективе встречается очень часто. Краткое решение и ответ в конце урока.

 





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 2597 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

3806 - | 3697 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.