Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Данные, иллюстрирующие зависимость величины меры качественной вариации от объема выборки




Наименование градации рассматриваемого признака Число респондентов (частота) в первой выборке (120 человек) Гипотетические частоты, отвечающие максимальному значению J Число респондентов (частота) во второй выборке (12 человек) Гипотетические частоты, отвечающие максимальному значению J
A        
B        
C        

 

При объеме выборки в 12 человек (и, конечно, при трех градациях признака) максимальное количество пар из разнородных элементов равно (4×4 + 4×4 + 4×4) = 48. И реализация такой возможности (отвечающая последнему столбцу таблицы) говорит о наличии максимального разброса по рассматриваемому признаку. Другими словами, для выборки в 12 человек число 48 говорит о максимальном разбросе. А при объеме выборки в 120 человек (при тех же трех градациях) такого малого количества пар не может быть даже при самом минимальном (но ненулевом) разбросе. Ясно, такой минимальный разброс будет иметь место, если какое-то одно значение будет встречаться 119 раз, а другое – один раз (при отсутствии третьего значения). Количество же пар из разнородных элементов в таком случае будет равно 119, что больше 48.

Итак, если мы будем пользоваться только числителем дроби, выражающей коэффициент J, то в одном случае число 48 будет говорить о максимальном разбросе, а в другом – число 119 – о практическом отсутствии разброса. Мы полностью теряем возможность сравнивать величину коэффициента для разных совокупностей. Это вряд ли может быть приемлемо: любой анализ – это сравнение.

Именно для того, чтобы избежать описанного недоразумения, обычно поступают таким образом: в числитель помещают формулу, выражающую суть строящегося коэффициента, а в знаменатель – максимально возможное значение этого коэффициента для рассматриваемой ситуации (в нашем случае эта ситуация определяется объемом выборки и количеством градаций рассматриваемого признака). В итоге получившийся показатель “загоняется” в интервал от 0 до 1 (иногда используется интервал от -1 до +1, как в случае многих коэффициентов связи, начиная с известного коэффициента корреляции). Такая процедура называется нормировкой коэффициента.

Нетрудно проверить, что в рассматриваемом случае описанная нормировка есть деление числителя на аналогичную сумму произведений, отвечающую равномерному распределению (т.е. распределению, когда все градации признака встречаются с одинаковой частотой). Именно это отвечает приведенной выше формуле для вычисления J.

Строгое доказательство того, что именно в случае равномерного распределения число возможных пар рассматриваемого вида будет максимальным, можно найти в [Паниотто, Максименко, 1982]; там же приведена общая формула для коэффициента J (в названной работе он обозначен символом a k):

где N - объем выборки, k - количество градаций рассматриваемого признака, ni и nj - соответственно, частоты встречаемости i -й и j -й градаций.

В заключение обсуждения вопроса о коэффициенте качественной вариации отметим следующий важный для дальнейшего факт. Если мы имеем дело с дихотомическим признаком, принимающим два значения – 0 и 1, то, вычислив для такого признака обычную дисперсию, мы фактически получим соответствующий коэффициент качественной вариации (точнее, величину, равную этому коэффициенту, деленному на 4; предлагаем читателю самому это проверить). Этот факт подтверждает то, что далее станет для нас очень важным: для анализа дихотомических номинальных данных оказывается возможным использование “количественных” методов.

Еще один коэффициент разброса, также подходящий для анализа номинальных данных, основан на понятии энтропии распределения, к рассмотрению которой мы переходим.

 





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 516 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2242 - | 2052 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.