Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выбор более точной шкалы путем сравнения величин относительной устойчивости измерения




 

 

 

Но относительные ошибки при условии, что все градации обеих шкал работают, таковы:

для пятичленной ∆отн =0,95/(5-1)=0,238 и для трехчлен­ной ∆0,99/(3-1)=0,495; округленно 0,24 и 0,49. Получаем, что относительные ошибки семичленной шкалы (0,25) и пяти­членной (0,24) практически одинаковы, а трехчленной — существенно выше (0,49).

Какая из трех шкал более надежна? Вопрос решается при сравнении устойчивости шкалы и величины относительной ошибки. Устойчивость данных по пятичленной и трехчленной шкалам сопоставима: 95% и 99%. Иными словами, опра­шиваемые хорошо различают градации этих шкал, лучше, чем в семичленной шкале: там устойчивость равна 75%. По этой причине последнюю надо забраковать. Остается выбор из двух оставшихся. Пятичленная шкала имеет высокую устойчивость и небольшую ошибку, а трехчленная — более высокую устой­чивость и приемлемую ошибку (меньше половины градации шкалы). Но в отиошеняи к трем градациям это составит 0,49:3=0,16, а для пятичленной — 0,24:5=0,05 длины шкалы. Следовательно, пятичленная шкала втрое чувствительнее, а значит, правильнее и точнее.

Суммируем все сказанное о проверке надежности шкал в следующей схеме (схема 6).

 

 

ОБЩАЯ ХАРАКТЕРИСТИКА ШКАЛ

Применяют различные классификации измеритель­ных эталонов. Мы будем пользоваться наиболее распро­страненной — континуальной классификацией (схе­ма 7), в которой шкалы упорядочены по мере повыше­ния их способности удовлетворять требованиям более многообразных операций с числами.11

11 О типах шкал более подробно см. [112, 129]

 

Здесь выделено пять классов шкал, причем назва­ния классов часто двоякие: более полные и сокращен­ные. Часто шкалам даются "собственные" имена по фа­милии изобретателя (например, шкалы Гуттмана, Тер­стоуна, Гилфорда, Богардуса, Лайкерта и др.), но все они укладываются в предложенную классификацию. Далее следует запомнить, что все эти шкалы предназначены для квантификации одномерных распределений, т. е. из­мерения некоторой протяженности в одном и только в одном континууме свойств. Фактически же нередко пользуются многомерными измерениями, моделирующи­ми объект (см. гл. 5, § 1).

 

Простая номинальная шкала

 

Номинальная шкала служит предпосылкой всех шкальных процедур. Она устанавливает отношения ра­венства между явлениями, которые включены в один класс. Пункты шкалы — эталоны качественной класси­фикации свойств. Например, (А) рабочие ручного труда, не требующего специальной подготовки; (В) рабочие ручного труда высокой квалификации; (С) рабочие, за­нятые на механизированном оборудовании, средней квалификации; (D) рабочие механизированного труда высокой квалификации; (Е) автоматчики без навыков наладки; (F) пул ьтовики-наладчики.

В этой шкале, каждому из пунктов которой дается детальная эмпирическая интерпретация (по индикато­рам конечного перечня соответствующих профессий), интуитивно угадывается некоторый порядок: группы рабочих перечислены по мере повышения механизации труда и, возможно, по мере роста квалификации. Однако интуиция — не доказательство. Шкала остается неупо­рядоченной.

Более явный пример — группировка по мотивам увольнения с работы: (а) не устраивал заработок; (b) не­удобная сменность; (с) плохие гигиенические условия труда; (d) неинтересная работа и т. д. Упорядочить эти пункты невозможно: они не располагаются в контину­ум. Символическая запись номинальной неупорядочен­ной шкалы такова:

(А) ^ (В) ^ (С) ^... ^ (К), где знак ^ означает дизъюнкцию (либо—либо).

Операции с числами для номинальной шкалы сле­дующие.

1. Нахождение частот распределения по пунктам шкалы с помощью процентирования или в натуральных единицах. Нетрудно подсчитать численность каждой группы и отношение этой численности к общему ряду распределения (частоты).

2. Поиск средней тенденции по модальной частоте. Модальный (Мо) называют группу с наибольшей чис­ленностью.

Эти две операции (1) и (2) уже дают представление о распределении социальных характеристик в количе­ственных показателях. Его наглядность повышается отображением в диаграммах (рис. 6, где А — модальная группа). Во всех трех случаях за 100% принята общая численность обследованных. Диаграмма 6, а позволяет, однако, отразить распределения, в которых сумма про­центов превышает 100, т. е. некоторые обследуемые мо­гут попасть в несколько секций шкалы одновременно (например, совмещают различные виды деятельности).

3. Самым сильным способом количественного ана­лиза является в данном случае установление взаимо­связи между рядами свойств, расположенных неупоря­доченно. С этой целью составляют перекрестные табли­цы (схема 8).

Помимо простой процентовки, в таблицах перекрест­ной классификации можно подсчитать критерий сопря­женности признаков по Пирсону: хи-квадрат (х2) — простейший показатель обоснованности вывода о наличии или отсутствии связи между сопоставляемыми характери­стиками, т. е. связанности качественных классификаций. Коэффициент Чупрова (Т-коэффициент) позволит по той же таблице определить напряженность связи, если хи-квадрат показывает, что она имеет место.12

12 Об использовании различных коэффициентов при работе с неупорядоченными номинальными шкалами см. [218, С. 189—172, 189—199]. Интересен метод, предложенный С. В. Чесноковым, который позволяет анализировать данные, фиксированные в номинальных шка­лах, используя относительно "естественный" язык представления ре­зультатов, хорошо доступных неспециалистам [285].





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 416 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.