Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Порядок решения задач с использованием принципа Да­ламбера

План урока № 23

Тема урока: Возникновение сил инерции при движении несвободной материальной точки;. Принцип Даламбера; метод кинетостатики.

Цель урока: Изучить Возникновение сил инерции при движении несвободной материальной точки;. Принцип Даламбера; метод кинетостатики.

Оборудование: Компьютер, плакаты

Место проведения: Аудитория №55

Порядок проведения

1.Организационный момент

2.Изложение нового материала

3.Закрепление материала

4.Подведение итогов

Ход урока

Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики.

Материальные точки, движение которых ограничено связями, называются несвободными.

Для несвободных точек необходимо определять реакции связей. Эти точки движутся под действием активных сил и ограничивающих движение реакций связей (пассивных сил).

Несвободные материальные точки освобождаются от связей: связи заменяются их реакциями. Далее несвободные точки можно рассматривать как свободные (принцип освобождаемости от связей).

Сила инерции

Инертность — способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции — сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» — телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

FИН = / mа/

Таким образом, силы, действующие на материальные точки m1 и m2 (рис. 14.1), при разгоне платформы соответственно равны

Fин2 = m2 а

Разгоняющееся тело (плат­форма с массой т (рис. 14.1)) си­ лу инерции не воспринимает, иначе разгон платформы вообще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нор­мального ап и касательного at (рис. 14.2).

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная

При равномерном движении по дуге всегда возникает нормальное ускорение, касательное ускоре­ние равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач. Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

 

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равно­весии:

Порядок решения задач с использованием принципа Да­ламбера

  1. Составить расчетную схему.
  2. Выбрать систему координат.
  3. Выяснить направление и величину ускорения.
  4. Условно приложить силу инерции.
  5. Составить систему уравнений равновесия.
  6. Определить неизвестные величины.

Примеры решений задач

Пример 1. Рассмотрим движение платформы по шероховатой поверхности с ускорением (рис. 14.4).

Решение

Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу, становится уравновешенной, и можно составить уравне­ния равновесия. Наносим систему координат и составляем уравнения проекций сил.


где Frb — движущая си­ла; Fтр – сила трения; G — сила тяжести; R — реакция опоры; Fmi — сила инерции; f — коэффициент трения.

Пример 2. Тело весом3500 Н движется вверх по наклонной плоскости согласно уравнению S =0,16t2 (рис.14.5). Определить ве­личину движущей силы, если коэффициент трения тела о плоскость f = 0,15.

1. Составим расчетную схему, выбе­рем систему координат с осью Ох вдоль наклонной плоскости.

Активные силы: движущая, сила трения, сила тяжести. Наносим реакцию в опоре перпендикулярно плоскости. Чтобы верно направить силу инер­ции, необходимо знать направление ускорения, определить это можно по уравнению движения.

При а > 0 движение равноускорен­ное. 2. Определяем ускорение движения:

a = v' = S"; v = S' = 0,32 t; a = v' = 0,32 м/с2 > 0.

Силу Fин направим в обратную от ускорения сторону.

3. По принципу Даламбера составим уравнения равновесия:

4. Подставим все известные величины в уравнения равновесия:

Выразим неизвестную силу и решим уравнение:

Fдв = 3500 • 0,5 + 0,15 * 3500 • 0,866 + 3500 • 0,32 / 9,81 = 2318,8 Н.



<== предыдущая лекция | следующая лекция ==>
Способ – бабушка нашептывает « Живые помощи» и обвязывает ниточкой | Пробные уроки и занятия в школе
Поделиться с друзьями:


Дата добавления: 2015-10-21; Мы поможем в написании ваших работ!; просмотров: 5094 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.