Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Важнейшее условие существования клетки, и, следовательно, жизни – нормальное функционирование биологических мембран. Мембраны – неотъемлемый компонент всех клеток




Все биологические мембраны имеют толщину от 5 до 10 нм, содержат белки липиды, соотношение между которыми варьирует в зависимости от происхождения мембраны. Кроме того, в них присутствуют углеводы, неорганические соли, вода и ряд других соединений; в некоторых мембранах обнаружены следы РНК (до 0,1%). У млекопитающих мембраны содержат особенно особенно большое количество фосфолипидов и холестерола. В настоящее время общепринятой моделью строения мембран является жидкостно-мозаичная, предложенная в 1972 году С.Синджером и Дж.Николсоном.

Структурной единицей мембраны является фослолипидный бислой. Фосфолипиды – амфипатичекие молекулы, т.е. в одной молекуле имеются как гидрофильные, так и гидрофобные участки. Фосфолипидный бислой образуется за счет гидрофобного воздействия между цепями остатков жирных кислот, входящих в состав липидов. Он представляет собой листок, состоящий из 2 слоев фосфолипидов, причём их полярные головки обращенеы к воде, а цепи остатков жирных кислот формируют внутреннюю гидрофобную среду. При встряхивании фосфолипидов с водой они образуют шарообразные мицеллы, где цепи остатков жирных кислот направлены в сторону, противоположную гидрофильной поверхности.

Липидный бислой с обеих сторон покрыт белками. В соответсвии с жидкой мозаичной моделью мембраны сами липиды и некоторые белки способны передвигаться в плоскости бислоя.

Мембранные белки выполняют несколько функций:

они могут переносить молекулы через мембрану;

являются рецепторами для химических агентов (таких, так гормоны);

через свои разветвленные углеводные цепи обеспечивают межклеточное взаимодействие, а также распознавание антигенов;

действуют в качестве ферментов;

Белки могут быть интегральными, прочно встроенными в мембрану или ассоциированными. Последние непрочно или обратимо связаны с мембраной и способны отцеплятся даже при мягких воздействиях. Интегральные белки могут был ковалентно связаны концевой карбоксильной группой белка с фосфолипидами мембраны. Многие интегральные белки нерастворимы в воде. Они погружены в мембрану и удерживаются там тремя основными силами:

ионными взаимодействиями с полярными головками;

гидрофобными взаимодействиями с внутренней липидной частью мембраны;

специфическими взаимодействиями с холестеролом и другими молекулами мембраны.

Большинство интегральных белков пронизывают липидный бислой и имеют полярные участки с двух сторон.

Новейшие данные, полученные методом рентгеноструктурного анализа, показали, что цепи мембранных белков сворачиваются, по-видимому так, что –спиральные и -структурные участки оказываются погруженными в гидрофобную область мембраны; находящиеся вне мембраны части молекулы образованы преимущественно неупорядоченными структурами.

У мембран различают наружную и внутреннюю стороны, которые в большинстве случаев имеют неодинаковый состав, то есть мембраны асимметричны. Липиды и белки, расположенные на наружной стороне плазматической мембраны, обычно имеют ковалентно связанные с ними углеводы. Внутренняя сторона мембраны и внутриклеточные мембраны, как правило, лишены углеводов. Углеводная часть представлена полисахаридами, включающими обычно не более 15 моносахаридных остатков, которые часто образуют разветвленные структуры. В плазмалемме эукариотических клеток часто обнаруживаются галактоза, манноза, фукоза, N-ацетилглюкозамин, N-ацетилгалактозамин, арабиноза, ксилоза, нейраминовая кислота. Гликолипиды представлены гликозилдиацилглицеринами (преимущественно в бактериальных мембранах) и гликосфинголипидами: цереброзиды, ганглиозиды и др. (в основном у эукариотических клеток).

Мембрана представляет собой динамическую структуру. Наиболее подвижным компонентом в ней являются липиды. Они довольно свободно двигаются в плоскости липидного слоя (латеральное перемещение), меняя своих “соседей” в среднем 106 раз /сек. Молекулы белков также могут перемещаться латерально в плоскости мембраны. Возможно также, что белковые молекулы вращаются вокруг перпендикулярных и параллельных плоскости бислоя осей, что может иметь большое значение при функционировании макромолекул и мембран в целом.

Однако белки распределены в мембране не статистически, образуя участки с различными функциями. Иначе говоря, белковые молекулы не абсолютно свободно перемещаются в плоскости мембраны, поскольку могут существовать взаимодействия между отдельными белковыми молекулами и, кроме того, между белками мембран и цитоскелетом клетки: структурными белками, микрофиламентами, микротрубочками, примыкающими к мембране изнутри. В свою очередь расположение белковых молекул в мембране оказывает влияние на распределение и ориентацию липидных молекул в зависимости от сродства конкретных белков и липидов.

Подвижность мембранных молекул в значительной мере зависит от состава жирных кислот. Более упорядоченной и стабильной является структура мембран, содержащая большое число насыщенных жирных кислот в фосфолипидах, менее упорядоченной – содержащая значительные количества ненасыщенных жирных кислот. При оптимальных для жизнедеятельности живых организмов температурах мембрана, как правило, имеет жидкокристаллическое состояние (промежуточное между жидким и твердым). Это состояние обусловлено прежде всего наличием в мембранах системы липид – белок – вода, формирующей различного типа упорядоченные структуры, обладающие в то же время определенной подвижностью. Такое состояние мембран оказывает существенное влиянием на их функционирование и объясняет большую чувствительность к различным внешним факторам.

Соседние клетки одной ткани должны сообщаться друг с другом для того, чтобы координировать свою жизнедеятельность и функционировать как целое в соответствии со спецификой ткани. Такое сообщение достигается с помощью специальных коротких “трубочек”, которые собраны в дискообразные структуры в местах так называемых щелевых контактов. Каждая трубочка состоит из двух цилиндрических белковых молекул – коннексонов. Молекула – коннексона частично погружена в клеточную мембрану, а ее выступающая часть способна связываться в межклеточном пространстве с коннексоном соседней клетки, так что образуется непрерывный канал, соединяющий внутренне пространство двух клеток.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 788 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2318 - | 2273 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.