Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Биосинтез белка. Транскрипция




Транскрипция у эукариот

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой. РНК-полимераза может присоединиться только к промотору, который находится на 3'-конце матричной цепи ДНК, и двигаться только от 3'- к 5'-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ). В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5'-конца, 2) полиаденилирование 3'-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост». Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию. Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

 

21)Биосинтез белка. Трансляция.

Процесс сборки молекулы белка идет в рибосомах и называется трансляцией. На одной молекуле и-РНК последовательно располагаются несколько рибосом. В функциональном центре каждой рибосомы способны поместиться два триплета и-РНК. Кодовый триплет нуклеотидов – молекулы т-РНК, подошедшей к месту синтеза белка, соответствует триплету нуклеотидов и-РНК, находящемуся в данный момент в функциональном центре рибосомы. Тогда рибосома по цепочке и-РНК делает шаг, равный трем нуклеотидам. Аминокислота отделяется от т-РНК и становится в цепочку мономеров белка. Освободившаяся т-РНК уходит в сторону и через некоторое время может снова соединиться с определенной кислотой, которую будет транспортировать к месту синтеза белка. Таким образом, последовательность нуклеотидов в триплете ДНК соответствует последовательности нуклеотидов в триплете и-РНК.

 

22)Посттранскрипционная модификация РНК. Процессинг и сплайсинг мРНК.

Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Кэпирование представляет собой присоединение к 5'-концу транскрипта 7-метилгуанозина через необычный для РНК 5',5'-трифосфатный мостик, а также метилирование остатков рибозы двух первых нуклеотидов. Функции кэпа и связанных с ним белков: участие в сплайсинге;

участие в процессинге 3'-конца мРНК;

экспорт мРНК из ядра;

защита 5'-конца транскрипта от экзонуклеаз;

участие в инициации трансляции.

Фермент поли(А)-полимераза присоединяет 3'-концу транскрипта от 100 до 200 остатков адениловой кислоты. Полиаденилирование осуществляется при наличии сигнальной последовательности 5'- AAUAAA-3' на 3'-конце транскрипта, за которой следует 5'-CA-3'. Вторая последовательность является сайтом разрезания.

После полиаденилирования мРНК подвергается сплайсингу, в ходе процессе которого удаляются интроны (участки, которые не кодируют белки), а экзоны (участки, кодирующие белки) сшиваются и образуют единую молекулу. Сплайсинг катализируется крупным нуклеопротеидным комплексом — сплайсосомой, состоящей из белков и малых ядерных РНК. Многие пре-мРНК могут быть подвергнуты сплайсингу разными путями, при этом образуются разные зрелые мРНК, кодирующие разные последовательности аминокислот (альтернативный сплайсинг).

 

23)Понятие о фолдинге. Роль шаперонов в процессе биосинтеза белка.

Фо́лдингом белка называют процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).

В фолдинге участвуют белки-шапероны. И хотя большинство только что синтезированных белков могут сворачиваться и при отсутствии шаперонов, некоторому меньшинству обязательно требуется их присутствие.

При синтезе белков N-концевая область полипептида синтезируется раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют Ш-70.

 

Ш-70 – высококонсервативный класс белков, который присутствует во всех отделах клетки: цитоплазме, ядре, митохондриях.

Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию (например, доменное строение), осуществляется в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомерного комплекса, состоящего из 14 субъединиц.

Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть элементы, характерные для несвёрнутых молекул (прежде всего участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60. В специфической среде этой полости, в изоляции от других молекул клетки происходит выбор возможных конформаций белка, пока не будет найдена единственная, энергетически наиболее выгодная конформация.

Высвобождение белка со сформированной нативной конформацией сопровождается гидролизом АТФ в экваториальном домене. Если белок не приобрёл нативной конформации, то он вступает в повторную связь с шапероновым комплексом. Такой шаперонзависимый фолдинг белков требует затрат большего количества энергии.

 

24)Молекулярные механизмы экспрессии генов прокариот.

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Особенностью прокариот является транскрибирование мРНК со всех структурных генов оперона в виде одного полицистронного транскрипта, с которого в дальнейшем синтезируются отдельные пептиды. Таким образом, регуляция экспрессии генов, организованных у прокариот в опероны, является координированной. Синтез полицистронной мРНК обеспечивает одинаковый уровень синтеза всех ферментов, участвующих в биохимическом процессе.

 

25)Регуляция экспресии генов у эукариот. Мед. Значение.

..Опероны эукариотических клеток имеют несколько генов - регуляторов, которые могут располагаться в разных хромосомах.

.. Структурные гены, контролирующие синтез ферментов одного биохимического процесса, могут быть сосредоточены в нескольких оперонах, расположенных не только в одной молекуле ДНК, но и в нескольких.

.. Сложная последовательность молекулы ДНК. Имеются информативные и неинформативные участки, уникальные и многократно повторяющиеся информативные последовательности нуклеотидов.

.. Эукариотические гены состоят из экзонов и интронов, причем созревание и-РНК сопровождается вырезанием интронов из соответствующих первичных РНК-транскриптов (про-и-РНК), т.е. сплайсингом.

.. Процесс транскрипции генов зависит от состояния хроматина. Локальная компактизация ДНК полностью блокирует синтез РНК.

.. Транскрипция в эукариотических клетках не всегда сопряжена с трансляцией. Синтезированная и-РНК может длительное время сохраняться в виде информосом. Транскрипция и трансляция проис­ходят в разных компартментах.

.. Некоторые гены эукариот имеют непостоянную локализа­цию (лабильные гены или транспозоны).

.. Методы молекулярной биологии выявили тормозящее действие белков-гистонов на синтез и-РНК.

.. В процессе развития и дифференцировки органов активность генов зависит от гормонов, циркулирующих в организме и вызывающих специфические реакции в определенных клетках. У млекопитаю­щих важное значение имеет действие половых гормонов.

.. У эукариот на каждом этапе онтогенеза экспрессировано 5-10% генов, остальные должны быть заблокированы.

Мед. Значение-

 

 

26)Функция Оперонов, регулирование по механизму индукции.

Оперон – группа тесно связанных между собой генов, которые программируют образование структурных белков и ферментов в клетке. Механизм индукции:

.. При отсутствии лактозы активный белок-репрессор связывается с оператором и блокирует синтез мРНК, кодирующей ферменты катаболизма лактозы. В результате эти ферменты не образуются.

.. Если глюкозы нет, а лактоза есть, то последняя связывается с белком-репрессором и ингибирует его, не давая ему связаться с геном-оператором и препятствовать работе РНК-полимеразы. Это позволяет РНК-полимеразе считывать информацию, отвечающую за синтез ферментов катаболизма лактозы, и синтезировать мРНК. Таким образом, лактоза является индуктором транскрипции.

 

27)Функция оперонов,регулирование по механизму репрессии.

Триптофановый оперон(механизм репрессии)

Триптофановый оперон в целом отвечает за синтез триптофана.

 

Функционирование триптофанового оперона в некотором смысле противоположно лактозному. Регуляция осуществляется по механизму репрессии.

... В отличие от лактозного оперона, белок-репрессор синтезируется в неактивном состоянии и не может заблокировать транскрипцию генов, кодирующих ферменты синтеза триптофана. Синтез этой аминокислоты будет в клетке продолжаться до тех пор, пока в питательной среде не появится триптофан.

 

... Триптофан соединяется с белком-репрессором и активирует его. Далее такой активный комплекс присоединяется к гену-оператору и блокирует транскрипцию. Таким образом, при наличии триптофана в среде прекращается его внутриклеточный синтез, экономятся ресурсы и энергия бактериальной клетки. В этом случае триптофан является репрессором транскрипции.

 

28)Понятие о гене. Структурная организация генов прокариот.

Ген можно определить как единицу наследственной информации, занимающую определенное положение в геноме или хромосоме и контролирующую выполнение определенной функции в организме. У прокариот регуляторные зоны «обслуживают» несколько генов. Эти гены вместе с регуляторными элементами носят название оперон. Таким образом, оперон состоит из двух функционально различных участков: (см. рис. 18, А).

 

Кодирующего участка, который содержит несколько структурных генов. Регуляторной зоны, которая включает следующие участки: Стартовый кодон – сайт (место) инициации транскрипции, Терминатор – сайт конца транскрипции,Лидирующую область,Трейлерную область, Промотор,Оператор, Активатор, Спейсеры. Третий элемент – регуляторные гены, которые непременно входят в состав наименьшего функционирующего участка, в этом разделе рассматриваться не будут.

29) Понятие о гене. Структурная организация генов эукариот.

Ген можно определить как единицу наследственной информации, занимающую определенное положение в геноме или хромосоме и контролирующую выполнение определенной функции в организме. В общих чертах строение гена про- и эукариот в принципе одинаково. Ген эукариот так же как и у прокариот функционирует только совместно с регуляторными зонами. Но такой тандем у эукариот не называется опероном. Ген эукариот представляет собой в основном кодирующую часть ДНК, а регуляторные зоны – не кодирующую ДНК. Также как и у прокариот, рассмотрим не только строение самого гена – кодирующей его части, но и обслуживающие его элементы – регуляторные зоны. 1. Ген (кодирующая часть) состоит из: Экзонов, Интронов.

2. Регуляторные участки гена содержат: Стартовый кодон – сайт (место) начала транскрипции, Терминатор – сайт окончания транскрипции, Лидерную последовательность, Трейлерную последовательность, Промотор, Контролирующие зоны располагаются вблизи от обслуживаемого гена, Модуляторы (энхансеры, сайленсеры) – располагаются вдали от гена.

 

30)Классификация генов. Кластерные гены.

По функциональному значению различают структурные гены, регуляторные гены.

По характеру взаимодействия в аллельной паре:- доминантный (ген, способный подавлять проявление аллельного ему рецессивного гена); - рецессивный (ген, проявление которого подавлено аллельным ему доминантным геном).

Кластер генов (gene cluster) [англ. cluster — скопление, гроздь; греч. genos — род, рождение, происхождение] — группа расположенных рядом на хромосоме повторов одного и того же или родственных генов, входящих в состав единого мультигенного семейства. Напр., альфа- и бета-глобиновые гены человека расположены в виде двух К.г. на разных хромосомах; у эубактерий идентифицировано 16 К.г., состоящих из 2 и более генов, взаимное расположение генов в которых в высокой степени консервативно. Часто гены, входящие в К.г., относятся к одной функциональной группе.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 2673 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2351 - | 2153 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.