Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сложение и вычитание многозначных чисел (устные и письменные приемы) (М-4, ч.1, с.62)




Литература: Б.Б. с.132-134

При изучении темы «Сложение и вычитание многозначных чисел» основными задачами учителя являются:

· обобщить и систематизировать знания учащихся о действиях сложения и вычитания,

· выработать осознанные и прочные навыки письменных вычислений.

Сложение и вычитание многозначных чисел изучаются одновременно. Это создаёт лучшие условия для овладения знаниями, умениями и навыками, так как вопросы теории этих действий взаимосвязаны, а приёмы вычислений сходны.

С арифметическими действиями сложения, вычитания, а также с некоторыми устными и письменными приемами их выполнения в концентре «Тысяча», учащиеся уже хорошо знакомы. Поэтому при изучении темы «Сложение и вычитание многозначных чисел» целесообразно активно опираться на знания детей, увеличив объём и усилив самостоятельное выполнение заданий.

Подготовительную работу к изучению темы начинают ещё при изучении нумерации многозначных чисел. С этой целью, прежде всего, повторяют устные приёмы сложения и вычитания и свойства действий, на которые они опираются, например: 8400+600, 9800-700, 2000-1700, 740 000+160 000 т.п. Повторяют также письменные приёмы сложения и вычитания трёхзначных чисел. Полезно в устные упражнения на сложение и вычитание разрядных чисел включить примеры с пояснением вида:

6 сот.+8 сот.=14 сот.=1 тыс. 4 сот.;

1 сот. тыс. 5 дес. тыс. – 7 дес. тыс.=15 дес. тыс. -7 дес. тыс.= 8 дес. тыс.

Также полезно повторить и обобщить ранее свойства сложения (переместительное и сочетательное) с иллюстрацией различных случаев их практического применения для рационализации вычислений. Интересно в этом отношении упражнение, в котором предлагается вычислить сумму нескольких слагаемых разными способами и сравнить эти способы вычислений: 11+2+8+9+10, 11+2+(8+9)+10, 11+(2+8)+9+10, (11+9)+(2+8)+10. Это задание направлено на отработку умений практически применять изученные свойства сложения, распространенные на два и более слагаемых. При выполнении этого упражнения учитель обращает внимание учащихся на то, что использование свойств сложения помогает заметно упростить вычисления, просит детей провести сравнение предложенных способов вычислений, выбрать самый рациональный и обосновать свой выбор. Чтобы выработать у учащихся навык практического использования этих свойств сложения, в дальнейшем в устный счёт целесообразно включить аналогичные примеры с тем, чтобы дети чаще тренировались в их использовании для упрощения вычислений с учётом конкретных особенностей примера. Если пример содержит более трёх слагаемых, его нужно записать на доске.

Такая подготовительная работа создаёт возможность учащимся самостоятельно объяснить письменные приёмы сложение и вычитание многозначных чисел.

При ознакомлении с письменным сложением и вычитанием многозначных чисел учащиеся решают такие примеры, где каждый последующий включает в себя предыдущий, например:

752 4752 54752 _837 _6837 _76837 _376837

+246 +3246+43246425242552425152425

После решения таких примеров учащиеся сами сделают вывод о том, что письменное сложение и вычитание многозначных чисел выполняется так же как и трёхзначных чисел.

Далее случаи сложения и вычитания вводятся с нарастающей трудностью: постепенно увеличивается число переходов через разрядную единицу; включаются случаи вычитания, когда в уменьшаемом содержаться нули; изучается сложение нескольких слагаемых, а также сложение и вычитание величин.

При изучении темы «Сложение и вычитание» проводиться повторение уже известных учащимся случаев сложения и вычитания с нулём: b+0=b, d – 0 = d, 0+с = с, b – b =0, которые включаются сразу же в примеры на письменные вычисления с многозначным числами.

При изучении названной темы перед учителем стоит задача распространить уже знакомые алгоритмы письменного сложения и вычитания на действия с числами больше тысячи, но в пределах миллиона. Эта задача не так сложна при изучении сложения. Уже на первом уроке можно рассмотреть сложение многозначных чисел, как без перехода, так и с переходом через разряд, предварительно повторив алгоритм письменного сложения чисел в пределах 1000, таблицу сложения и вычитания чисел в пределах 20.

Значительно усложняется задача рассмотрения письменных алгоритмов при переходе к вычитанию. Особое внимание следует обратить на новые для учащихся случаи вычитания, чтобы суметь предупредить часто возникающие ошибки. Как показывают наблюдения на уроках и анализ проверочных работ, общий алгоритм вычитания учащиеся усваивают неплохо, а вот его частные случаи, когда в записи уменьшаемого содержаться нули, усваиваются плохо и впоследствии допускают большое число ошибок. Причина таких ошибок в неумении заменять единицу высшего разряда единицами более низшего разряда. Именно на этом необходимо обратить внимание при переходе к рассмотрению этого случая вычитания.

Прежде чем приступить к разъяснению алгоритма вычитания, когда в записи уменьшаемого имеется несколько нулей подряд, целесообразно вспомнить особенности десятичной системы счисления, соотношение между разрядными единицами, предложив учащимся, например, заполнить пропуски в следующих предложениях:

в 1 миллионе 10 сот. тыс.

в 1 миллионе … сот. тыс. и 10 дес.тыс.

в 1 миллионе … сот. тыс. … дес.тыс. и 10 тыс.

в 1 миллионе … сот. тыс. … дес.тыс. … тыс. и 10 сот.

в 1 миллионе … сот. тыс. … дес.тыс. … тыс. … сот. 10 дес.

в 1 миллионе … сот. тыс. … дес.тыс. … тыс. … сот. … дес. и 10 ед.

Очень полезны в качестве подготовительных и примеры такого вида:

_ 400 _ 300 _6000 _5000

8237 36

при решении которых необходимо подробно рассмотреть процесс занимания и замены взятой единицы высшего разряда 10 единицами среднего низшего разряда.

Объяснение нового для учащихся случая можно провести так:

_ 4700

32

Начинаем вычитание с единиц, но из 0 нельзя вычесть 2. в разряде десятков числа 4700 стоит нуль. Значит, придётся взять («развязать» - можно показать на счётных палочках, которые завязаны в пучки по 10 и 10 таких пучков завязаны в сотню) 1 сотню. Учитель показывает одну сотню палочек: «Сколько это десятков? (10 десятков.) Берём 1 десяток. Сколько же десятков из взятой нами сотни останется в разделе десятков? (9 десятков.) Запомним. Мы взяли одну сотню из 7. Чтобы не забыть об этом, поставим точку над цифрой 7 точку. Взятую сотню мы заменили десятками. В 1 сотне 10 десятков. Из этих 10 десятков (9+1) мы взяли один десяток и перенесли в разряд единиц. 1 десяток содержит 10 единиц. Тогда в разряде десятков останется 9 десятков. (При первом объяснении над нулём в разряде десятков можно записать цифру 9, а в дальнейшем делать это лишь тогда, когда ученик обнаружит непонимание этого момента.) Теперь из десятка, который мы взяли (10 единиц), вычтем число 2 (10-2 = 8), запишем 8 единиц под единицами; из 9 десятков вычтем 3 десятка, получим 6 десятков, записываем в разряде десятков. Точка над цифрой 7 показывает, что 1 сотня была взята, следовательно, осталось 6 сотен. Запишем 6 в разряд сотен и 4 в разряде тысяч».

Дальнейшее расширение знаний письменных вычислений связано с рассмотрением приёмов письменного сложения трёх и большего числа слагаемых. Перед введением этих приёмов полезно вспомнить, что при сложении нескольких чисел их можно переставлять и объединять в группы любым способом.

Учитель объясняет, что при письменном сложении нескольких слагаемых, подписывают каждое слагаемое одно под другим: единицы под единицами, десятке под десятками и т.д. и складывают числа поразрядно. Как можно использовать этот способ при письменном сложении нескольких слагаемых, например: 3408+237.569+18.440? Пример записывается на доске. Учащиеся могут предложить сначала вычислить сумму двух первых слагаемых:

+ 3408

и затем к полученной сумме прибавить третье слагаемое:

+ 18440

На вопрос учителя: «Как находили сумму двух слагаемых?» - дети объясняют: «Мы подписали их одно под другим так, чтобы единицы одного числа стояли под единицами другого, десятки под десятками, сотни под сотнями и т.д., и складывали сначала единицы, потом десятки, потом сотни и т.д. по разрядам». Здесь следует задать вопрос, почему этот способ можно использовать при сложении трёх и более слагаемых. Далее учитель спрашивает: «Какое из трёх слагаемых удобно записать первым? Вторым? Третьим?» На доске появляется запись:

+ 18440

3408

Учитель обращает внимание детей на то, что при такой записи знак «+» пишется только один раз. Вызванный к доске ученик с подробным объяснением выполняет сложение. Полученный ответ полезно сравнить с результатом вычислений при решении примера первым способом и сделать вывод.

Чтобы убедиться, овладели учащиеся умениями письменно овладевать несколько слагаемых, можно предложить им самостоятельно сложить четыре слагаемых.

В процессе изучения темы повторяются и обобщаются знание детей о взаимности между компонентами и результатом каждого из действий: сложения и вычитания. Желательно, чтобы дети сами вспомнили, что если из суммы вычесть одно из слагаемых, то получиться другое слагаемое, и т.п.

Для закрепления, как и в других случаях, для выработки навыков вычислений необходимо включать разнообразные упражнения. Следует, как можно чаще предлагать задания: решить и выполнить проверку решения примеров одним из способов или реже двумя способами. Это помогает не только закрепить знания связей между результатами и компонентами действий, но и способствует выработке вычислительных навыков и воспитывает привычку контролировать себя.

Домашнее задание:

Составить тематическую проверочную работу по теме «Сложение и вычитание многозначных чисел», подобрать (составить) задания на все приемы.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 5836 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2217 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.