Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 


найти скачок функции в каждой точке разрыва;




Сделать схематический чертеж.

Решение. Функция непрерывна для , функция непрерывна в каждой точке из , функция непрерывна в каждой точке интервала .

Точки, в которых функция может иметь разрыв, это точки и , где функция меняет свое аналитическое выражение.

Исследуем точку .

, , . Таким образом, точка есть точка непрерывности функции .

Исследуем точку .

, , . Таким образом, односторонние пределы существуют, конечны, но не равны между собой. По определению, исследуемая точка – точка разрыва первого рода. Величина скачка функции в точке разрыва равен .

Сделаем схематический чертеж

Рис. 2


Контрольная работа №4.

Вариант 1

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 2

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 3

 

1. Вычислить пределы функций.

а)

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 4

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 5

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 6

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 7

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 8

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 9

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 10

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 11

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 12

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 13

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в)

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 14

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 15

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 16

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

Контрольная работа №4.

Вариант 17

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 18

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 19

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 20

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 21

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

Контрольная работа №4.

Вариант 22

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 23

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 24

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 25

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

Контрольная работа №4.

Вариант 26

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в)





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 5087 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2290 - | 2240 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.