Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Найти точки разрыва функции, если они существуют;




СПИСОК ЛИТЕРАТУРЫ

1. Бугров Я.С., Никольский С.М. Высшая математика: Учеб.для вузов:в 3т.-5-е изд.,стер.-М.:Дрофа.- (Высшее образование. Современный учебник).т.2. Дифференциальное и интегральное исчисление.-2003.-509 с.

2. Пискунов Н.С. Дифференциальное и интегральное исчисление: Учеб. пособие: в 2-х т.- Изд. стер. –М.: Интеграл – Пресс.Т.1. -2001.- 415 с.

3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Учеб. для вузов: в 3-х томах. – 8-е изд.-М.: Физматлит. т.1 – 2001. -697 с.

4. Берман Г.Н. Сборник задач по курсу математического анализа: Учеб. пособие. -22-е изд., перераб.- СПб: Профессия, 2003.-432 с.

5. Кудрявцев Л.Д. Курс математического анализа. Учеб. для вузов: В 3-х томах. – 5-е изд., перераб. и доп. –М.: Дрофа. Т.1. – 2003.-703 с.

6. Ильин В.А., Позняк Э.Г. Основы математического анализа. Учеб. для вузов в 2-х частях. – 6-е изд. стер. –М. Физматлит, 2002, -646 с.

7. Данко П.Е. и др. Высшая математика в упражнениях и задачах (с решениями): в 2 ч./ Данко П.Е., Попов А.Г., Кожевникова Т.Я.-6-е изд..-М.: ОНИКС 21 век, ч.2. -2002.-416 с.

 

Решение типового варианта контрольной работы.

1. Вычислить пределы функций.

а) Найти .

Решение. Прежде всего, проверим, применимы ли к данной дроби теоремы о пределах, или мы имеем дело с неопределенностью. Для этого найдем пределы числителя и знаменателя дроби. Функции и являются бесконечно большими. Поэтому, , .

Следовательно, имеем дело с неопределенностью вида .

Для раскрытия этой неопределенности и использовании теоремы о пределе отношения двух функций выделим в числителе и в знаменателе в старшей для числителя и знаменателя степени в качестве сомножителя и сократим дробь.

Ответ. 0.

б) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно разложить числитель и знаменатель на множители и сократить дробь на общий множитель.

Ответ. -9.

Найти .

Решение. Для вычисления данного предела подставим значение в функцию, стоящую под знаком предела. Получим,

.

Ответ. -3.

в) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно умножить числитель и знаменатель на выражение, сопряженное числителю, а затем сократить дробь на общий множитель.

Ответ. .

г) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно выделить первый замечательный предел:

Ответ. k

д) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно произведение преобразовать в частное, то есть неопределенность свести к неопределенности или .

Выделяем первый замечательный предел, то есть, умножаем числитель и знаменатель на . Получаем,

.

Ответ. .

 

е) Найти .

Решение. Для раскрытия неопределенности в этом случае, нужно выделить второй замечательный предел: .

Ответ. .

ж) Найти

Решение. Для раскрытия неопределенности в этом случае, нужно выделить второй замечательный предел: .

Ответ. .

Найти

Решение. Подставим значение в функцию, стоящую под знаком предела. Получим,

Ответ. .

2. Задана функция и два значения аргумента .

Требуется:

- найти пределы функции при приближении к каждому из данных значений слева и справа;

- установить является ли данная функция непрерывной или разрывной для каждого из данных значений ;

- сделать схематический чертеж.

Решение. Найдем левый и правый пределы в точке .

Левый предел конечен и равен 0, а правый предел бесконечен. Следовательно, по определению точка разрыва второго рода.

Найдем левый и правый пределы в точке .

, т.е. точка непрерывности функции .

Сделаем схематический чертеж.

Рис. 1

3. Функция задается различными аналитическими выражениями для различных областей независимой переменной.

Требуется:

найти точки разрыва функции, если они существуют;





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1056 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2432 - | 2320 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.