Лекции.Орг


Поиск:




TEXT 2. Early fuel injection systems




Diesel's original engine injected fuel with the assistance of compressed air, which atomized the fuel and forced it into the engine through a nozzle (a similar principle to an aerosol spray). The nozzle opening was closed by a pin valve lifted by the camshaft to initiate the fuel injection before top dead center (TDC). This is called an air-blast injection. Driving the three stage compressor used some power but the efficiency and net power output was more than any other combustion engine at that time.

Diesel engines in service today raise the fuel to extreme pressures by mechanical pumps and deliver it to the combustion chamber by pressure-activated injectors without compressed air. With direct injected diesels, injectors spray fuel through six or more small orifices in its nozzle. The early air injection diesels always had a superior combustion without the sharp increase in pressure during combustion. Research is now being performed and patents are being taken out to once again use some form of air injection to reduce the nitrogen oxides and pollution, reverting to diesel's original implementation with its superior combustion and possibly quieter operation. In all major aspects, the modern diesel engine holds true to Rudolf Diesel's original design, that of igniting fuel by compression at an extremely high pressure within the cylinder. With much higher pressures and high technology injectors present-day diesel engines use the so-called solid injection system applied by Herbert Akroyd Stuart for his hot bulb engine. The indirect injection engine could be considered the latest development of these low speed hot bulb ignition engines.

A vital component of all diesel engines is a mechanical or electronic governor which regulates the idling speed and maximum speed of the engine by controlling the rate of fuel delivery. Unlike Otto-cycle engines, incoming air is not throttled and a diesel engine without a governor can not have a stable idling speed and can easily overspeed, resulting in its destruction. Mechanically governed fuel injection systems are driven by the engine's gear train. These systems use a combination of springs and weights to control fuel delivery relative to both load and speed. Modern, electronically controlled diesel engines control fuel delivery by use of an electronic control module (ECM) or electronic control unit (ECU). The ECM/ECU receives an engine speed signal, as well as other operating parameters such as intake manifold pressure and fuel temperature, from a sensor and controls the amount of fuel and start of injection timing through actuators to maximize power and efficiency and minimize emissions.

Controlling the timing of the start of injection of fuel into the cylinder is a key to minimizing emissions, and maximizing fuel economy (efficiency), of the engine. The timing is measured in degrees of crank angle of the piston before top dead center. For example, if the ECM/ECU initiates fuel injection when the piston is 10 degrees before TDC, the start of injection, or timing, is said to be 10° BTDC. Optimal timing will depend on the engine design as well as its speed and load.

Advancing the start of injection (injecting before the piston reaches TDC) results in higher in-cylinder pressure and temperature, and higher efficiency, but also results in elevated engine noise and increased oxides of nitrogen (NOx) emissions due to higher combustion temperatures. Delaying start of injection causes incomplete combustion, reduced fuel efficiency and an increase in exhaust smoke, containing a considerable amount of particulate matter and unburned hydrocarbons.

 

TEXT 3. Accelerator pump

The greater inertia of liquid gasoline, compared to air, means that if the throttle is suddenly opened, the airflow will increase more rapidly than the fuel flow, causing a temporary "lean" condition which causes the engine to "stumble" under acceleration (the opposite of what is normally intended when the throttle is opened). This is remedied by the use of a small mechanical pump, usually either a plunger or diaphragm type actuated by the throttle linkage, which propels a small amount of gasoline through a jet, wherefrom it is injected into the carburetor throat. This extra shot of fuel counteracts the transient lean condition on throttle tip-in. Most accelerator pumps are adjustable for volume and/or duration by some means. Eventually the seals around the moving parts of the pump wear such that pump output is reduced; this reduction of the accelerator pump shot causes stumbling under acceleration until the seals on the pump are renewed.

The accelerator pump is also used to prime the engine with fuel prior to a cold start. Excessive priming, like an improperly-adjusted choke, can cause flooding. This is when too much fuel and not enough air are present to support combustion. For this reason, some carburetors are equipped with an unloader mechanism: The accelerator is held at wide open throttle while the engine is cranked, the unloader holds the choke open and admits extra air, and eventually the excess fuel is cleared out and the engine starts.

When the engine is cold, fuel vaporizes less readily and tends to condense on the walls of the intake manifold, starving the cylinders of fuel and making the engine difficult to start; thus, a richer mixture (more fuel to air) is required to start and run the engine until it warms up. A richer mixture is also easier to ignite.

To provide the extra fuel, a choke is typically used; this is a device that restricts the flow of air at the entrance to the carburetor, before the venturi. With this restriction in place, extra vacuum is developed in the carburetor barrel, which pulls extra fuel through the main metering system to supplement the fuel being pulled from the idle and off-idle circuits. This provides the rich mixture required to sustain operation at low engine temperatures.

In addition, the choke is connected to a cam or other such device which prevents the throttle plate from closing fully while the choke is in operation. This causes the engine to idle at a higher speed. Fast idle serves as a way to help the engine warm up quickly, and give a more stable idle while cold by increasing airflow throughout the intake system which helps to better atomize the cold fuel.

In many carbureted cars, the choke is controlled by a cable connected to a pull-knob on the dashboard operated by the driver. In some carbureted cars it is automatically controlled by a thermostat employing a bimetallic spring, which is exposed to engine heat, or to an electric heating element. This heat may be transferred to the choke thermostat via simple convection, via engine coolant, or via air heated by the exhaust. More recent designs use the engine heat only indirectly: A sensor detects engine heat and varies electrical current to a small heating element, which acts upon the bimetallic spring to control its tension, thereby controlling the choke. A choke unloader is a linkage arrangement that forces the choke open against its spring when the vehicle's accelerator is moved to the end of its travel. This provision allows a "flooded" engine to be cleared out so that it will start.

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1209 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

802 - | 693 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.