Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теснота связи и величина коэффициента корреляции




Коэффициент корреляции rxy Теснота связи
+ 0,91-1,0 Очень сильная
+ 0,81-0,9 Весьма сильная
+ 0,65-0,8 Сильная
+ 0,45-0,64 Умеренная
+ 0,25-0,44 Слабая
До + 0,25 Очень слабая
«+» - прямая зависимость «-» - обратная зависимость  

 

T-статистика Стьюдента

Для того чтобы оценить наличие связи между двумя переменными, также можно использовать t-статистику Стьюдента, которая оценивает отношение величины линейного коэффициента корреляции к среднему квадратическому отклонению и рассчитывается по формуле

.

Полученную величину tрасч сравнивают с табличным значением t-критерия Стьюдента с n-2 степенями свободы. Если tрасч > tтабл, то практически невероятно, что найденное значение обусловлено только случайными совпадениями величин X и Y d в выборке из генеральной совокупности, т.е. существует зависимость между X и Y. И наоборот, если tрасч < tтабл, то величины X и Y независимы.

 

Регрессионный анализ

Цель регрессионного анализа – определить количественные связи между зависимыми случайными величинами. Одна из этих величин полагается зависимой и называется откликом, другие – независимые, называются факторами. Для установления степени зависимости между откликом и факторами используются вычисляемые величины ковариации и коэффициент корреляции. Если коэффициент корреляции по абсолютной величине близок к единице, то для построения зависимости используется линейная модель. Для других случаев используются более сложные нелинейные модели.

Уравнение линейной регрессии имеет вид:

Y=a1X1 + a2X2 + …+ akXk, где а1, а2… аk – параметры, подлежащие определению методом наименьших квадратов (МНК). В среде MS Excel для этого используется встроенная функция ЛИНЕЙН и инструмент Регрессия из Пакета анализа.

 

Задание 1. Исследование связей между двумя исследуемыми признаками.

Условие задачи. По 20 туристическим фирмам были установлены затраты на рекламную кампанию и количество туристов, воспользовавшихся после ее проведения услугами каждой фирмы. Определить коэффициент корреляции между исследуемыми признаками.

Ход выполнения:

Откройте новую книгу MS Excel и создайте таблицу согласно рис. 6.1:

Рис.6.1.

Рассчитайте в ячейке С23 коэффициент корреляции, используя функцию КОРРЕЛ из категории Статистические.

Синтаксис функции:

КОРРЕЛ (массив1; массив 2):

где массив1 – ссылка на диапазон ячеек первой выборки (X);

массив2 – ссылка на диапазон ячеек второй выборки (Y).

В нашей задаче формула будет иметь вид: =КОРРЕЛ(B2:B21;C2:C21).

Сделайте вывод о тесноте связи между затратами на рекламу и количеством привлеченных туристов.

Оцените значимость коэффициента корреляции. С этой целью рассматриваются две гипотезы. Основная Н0: rxy=0 и альтернативная Н1: rxy≠0. Для проверки гипотезы Н0 рассчитайте t-статистику Стьюдента по формуле, указанной выше в ячейке С24. В нашем случае число степеней свободы ν = n-2=20-2 = 18 и формула будет следующей: =C23*КОРЕНЬ(20-2)/КОРЕНЬ(1-(C23*C23)).

Сравните полученное значение с критическим значением tν,α распределения Стьюдента. (При ν =18 и доверительной вероятности α = 0,05, tν,α, табл = 1,734). Сделайте вывод о наличии связи между исследуемыми величинами.

 

Задание 2. Построение регрессионной модели.

1-й способ. Функция ЛИНЕЙН.

В первом способе для получения коэффициентов а и b линейного уравнения регрессии Y=а*X+b, описывающего зависимость количества привлеченных туристов от затрат на рекламу воспользуемся статистической функцией ЛИНЕЙН. Для этого выделите две ячейки C26:D26 и выполните вставку функции ЛИНЕЙН с аргументами согласно рис.6.2.

Здесь Известные_значения_y – диапазон значений Количество туристов, Известные_значения_x – диапазон значений Затраты на рекламу. Нажмите комбинацию клавиш SHIFT+CTRL+ENTER.

Рис. 6.2. Аргументы функции ЛИНЕЙН

 

В ячейку D27 введите уравнение Y= a*X+b (вместо a и b подставьте полученные коэффициенты линейной регрессии).

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 1058 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2316 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.