Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пояснения к выполнению задания второго уровня. Выход из программы по запросу реализуется по приведённой блок-схеме (рис




 

Выход из программы по запросу реализуется по приведённой блок-схеме (рис. 2.3) с использованием функций Console.WriteLine(), Console.ReadLine(). В случае использования текстового ответа («Да», «Нет») не забудьте указать тип проверяемой в условии переменной – String.

 

Нет
Да
Выйти?
X=”Да”
L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEAh/WQq8AA AADbAAAADwAAAGRycy9kb3ducmV2LnhtbERPy4rCMBTdD/gP4QpuBk2VGZFqlFIYdCEM42N/aa5t MbkpScbWvzeLgVkeznuzG6wRD/KhdaxgPstAEFdOt1wruJy/pisQISJrNI5JwZMC7Lajtw3m2vX8 Q49TrEUK4ZCjgibGLpcyVA1ZDDPXESfu5rzFmKCvpfbYp3Br5CLLltJiy6mhwY7Khqr76dcq+D6a 0puS+n35vB4u14/i/bgslJqMh2INItIQ/8V/7oNW8JnGpi/pB8jtCwAA//8DAFBLAQItABQABgAI AAAAIQDw94q7/QAAAOIBAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsB Ai0AFAAGAAgAAAAhADHdX2HSAAAAjwEAAAsAAAAAAAAAAAAAAAAALgEAAF9yZWxzLy5yZWxzUEsB Ai0AFAAGAAgAAAAhADMvBZ5BAAAAOQAAABAAAAAAAAAAAAAAAAAAKQIAAGRycy9zaGFwZXhtbC54 bWxQSwECLQAUAAYACAAAACEAh/WQq8AAAADbAAAADwAAAAAAAAAAAAAAAACYAgAAZHJzL2Rvd25y ZXYueG1sUEsFBgAAAAAEAAQA9QAAAIUDAAAAAA== ">
Начало
L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEA6Lk1MMQA AADbAAAADwAAAGRycy9kb3ducmV2LnhtbESPQWsCMRSE7wX/Q3iFXopmLa3U1SjLgtSDULR6f2ye u0uTlyWJ7vrvm4LgcZiZb5jlerBGXMmH1rGC6SQDQVw53XKt4PizGX+CCBFZo3FMCm4UYL0aPS0x 167nPV0PsRYJwiFHBU2MXS5lqBqyGCauI07e2XmLMUlfS+2xT3Br5FuWzaTFltNCgx2VDVW/h4tV 8L0zpTcl9V/l7bQ9nt6L192sUOrleSgWICIN8RG+t7dawccc/r+kHyBXfwAAAP//AwBQSwECLQAU AAYACAAAACEA8PeKu/0AAADiAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht bFBLAQItABQABgAIAAAAIQAx3V9h0gAAAI8BAAALAAAAAAAAAAAAAAAAAC4BAABfcmVscy8ucmVs c1BLAQItABQABgAIAAAAIQAzLwWeQQAAADkAAAAQAAAAAAAAAAAAAAAAACkCAABkcnMvc2hhcGV4 bWwueG1sUEsBAi0AFAAGAAgAAAAhAOi5NTDEAAAA2wAAAA8AAAAAAAAAAAAAAAAAmAIAAGRycy9k b3ducmV2LnhtbFBLBQYAAAAABAAEAPUAAACJAwAAAAA= ">
Конец
Ввод: да/нет

 

 


Рис. 2.3. Блок-схема алгоритма

 


Таблица 2.1. Варианты заданий к лабораторной работе № 2.

 

k ai bi ai bi
  5,10,15 i  
  4,8,12  
  3,7,11  
  5,9,13  
  7,10,13 i +4  
  5,10,15 3i–1  
  8,12,16  
  5,10,15  
  7,11,15 4i - 3  
  5,9,13  
  4,9,14  
  3,8,13 3 i+ 5  
  4,8,12  
  5,8,11  
  4,6,8  

ЛАБОРАТОРНАЯ РАБОТА №3

 

Тема: Табулирование функции. Применение табулирования к решению уравнения f(x)= 0.

Цель работы: составление программы табулирования функции y = f(x) и ее использование для нахождения корня уравнения f(x)= 0 с заданной точностью.

 

Варианты заданий лабораторной работы №3 приведены в таблице 3.1.

 

Работа состоит из двух задач:

 

Задача 1. Найти таблицу значений функций y = f(x) на отрезке [ a, b ] с шагом h.

Задача 2. Вычислить корень уравнения f(x) = 0 на отрезке [ a, b ] с точностью e=0,005.

Перед выполнением задания любого уровня необходимо проверить графически, что на заданном отрезке [ a, b ] находится корень уравнения. Если корня на заданном отрезке нет, то следует определить по графику новый отрезок, содержащий корень, и при решении задачи рассматривать его. График привести в отчёте.

 

Задание (1 уровень)

1. Графически получить приближённое решение уравнения f(x) = 0. Уравнение взять из таблицы 3.1 в соответствии с номером своего варианта.

2. Составить блок-схему алгоритма табулирования функции f(x) на отрезке [ a, b ] с шагом h =0,1.

3. Составить программу табулирования функции f(x) на отрезке [ a, b ] с шагом h =0,1.

4. Ввести программу, выполнить её, получить и выписать 11 пар значений (x, y).

5. Для вычисления корня уравнения f(x) = 0 найти и выписать отрезок , полученный в результатах табулирования, на концах которого f(x) имеет разные знаки.

6. Повторно запуская программу табулирования, получить таблицу значений функции f(x) на отрезке с шагом h =0,1.

7. С экрана выписать новый отрезок , на концах которого функция f(x) имеет разные знаки. Вычислить середину этого отрезка – это и будет приближённый корень уравнения f(x)=0, с точностью

8. Вычислить значение функции в корне. Выписать полученные результаты.

Задание (2 уровень)

1. Графически получить приближенное решение уравнения f(x) = 0. Уравнение взять из таблицы 3.1 в соответствии с номером своего варианта.

2. Изменить блок-схему задачи табулирования функции f(x), предусмотрев возможность повторного запуска алгоритма табулирования на новом интервале с новым шагом h ( Выход из программы должен быть выполнен, если длина найденного интервала окажется меньше либо равна заданной погрешности e Перед выходом вычислить корень уравнения как середину последнего отрезка и значение функции в корне.

3. Составить программу табулирования f(x) на [ a, b ] с шагом h по новой блок-схеме.

4. Запустить программу, получить результаты по табулированию функции f(x) последовательно на данном интервале [ a, b ] с шагом h =0,1 и на каждом новом интервале , где функция меняет знак на противоположный, с шагом .

5. С экрана выписать результаты табулирования на первом интервале, а для последующих результатов – выписывать две строки, где функция меняет свой знак. Выписать корень уравнения и значение функции в корне.

Задание (3 уровень)

1. Графически получить приближённое решение уравнения f(x) = 0. Уравнение взять из таблицы 3.1 в соответствии с номером своего варианта.

2. Составить блок-схему и программу, реализующие алгоритм вычисления корня уравнения f(x)= 0 на интервале [ a, b ] с заданной точностью . Для нахождения корня использовать алгоритм табулирования функции f(x), последовательно уменьшая в 10 раз интервал поиска , где пока не выполнится условие: .

Замечания:

а) на каждом отрезке проводить не более 10 вычислений значений функции f(x);

б) приближенным решением уравнения считать середину последнего отрезка .

3. Ввести программу, выполнить её и получить результат. На экран вывести границы каждого нового интервала поиска корня, корень уравнения, заданную точность и значение функции в корне.

 

Пример

Задача 1. Найти таблицу значений функций y = f(x ) на отрезке [ a, b ] с шагом h =0.1, где , a =1, b =2.

Задача 2. Найти корень уравнения f(x) = 0 на отрезке [ a, b ] с точностью
e= 0.005.

Порядок выполнения задания (1 уровень)

1. Решение уравнения графическим методом.

1.1. Проверим графически, что на заданном отрезке [ a, b ] есть корень уравнения f(x)= 0, т.е.

. (1)

Перепишем уравнение (1):

Построим два графика (рис. 3.1)

M
X *

 


Рис. 3.1. Пересечение графиков

 

Графики пересекаются друг с другом в точке М. Абсцисса точки М (X*) – есть корень уравнения

1.2. Если на заданном в условии отрезке графики не пересекаются, то это означает, что данный отрезок не содержит корня уравнения. В этом случае следует определить по графику новый отрезок, содержащий корень, и при решении задачи рассматривать его.

2. Составление блок-схемы задачи табулирования.

2.1. Входные данные: a, b – границы отрезка, h - шаг.

Выходные данные: 11 пар значений (x, y).

L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEAUwHCU8IA AADaAAAADwAAAGRycy9kb3ducmV2LnhtbESPQYvCMBSE7wv7H8Jb8LKsqSKydI1SCqIHYdHV+6N5 tsXkpSTR1n9vhAWPw8x8wyxWgzXiRj60jhVMxhkI4srplmsFx7/11zeIEJE1Gsek4E4BVsv3twXm 2vW8p9sh1iJBOOSooImxy6UMVUMWw9h1xMk7O28xJulrqT32CW6NnGbZXFpsOS002FHZUHU5XK2C 350pvSmp35T30/Z4mhWfu3mh1OhjKH5ARBriK/zf3moFM3heSTdALh8AAAD//wMAUEsBAi0AFAAG AAgAAAAhAPD3irv9AAAA4gEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQ SwECLQAUAAYACAAAACEAMd1fYdIAAACPAQAACwAAAAAAAAAAAAAAAAAuAQAAX3JlbHMvLnJlbHNQ SwECLQAUAAYACAAAACEAMy8FnkEAAAA5AAAAEAAAAAAAAAAAAAAAAAApAgAAZHJzL3NoYXBleG1s LnhtbFBLAQItABQABgAIAAAAIQBTAcJTwgAAANoAAAAPAAAAAAAAAAAAAAAAAJgCAABkcnMvZG93 bnJldi54bWxQSwUGAAAAAAQABAD1AAAAhwMAAAAA ">

начало
L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEAZsxCcMIA AADaAAAADwAAAGRycy9kb3ducmV2LnhtbESPT4vCMBTE7wt+h/AEb2uq4LJWo6hQ8SLL+gevj+a1 KTYvpYlav/1mQfA4zMxvmPmys7W4U+srxwpGwwQEce50xaWC0zH7/AbhA7LG2jEpeJKH5aL3McdU uwf/0v0QShEh7FNUYEJoUil9bsiiH7qGOHqFay2GKNtS6hYfEW5rOU6SL2mx4rhgsKGNofx6uFkF m/WlzM7Nz37bmUudVfsim04KpQb9bjUDEagL7/CrvdMKJvB/Jd4AufgDAAD//wMAUEsBAi0AFAAG AAgAAAAhAPD3irv9AAAA4gEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQ SwECLQAUAAYACAAAACEAMd1fYdIAAACPAQAACwAAAAAAAAAAAAAAAAAuAQAAX3JlbHMvLnJlbHNQ SwECLQAUAAYACAAAACEAMy8FnkEAAAA5AAAAEAAAAAAAAAAAAAAAAAApAgAAZHJzL3NoYXBleG1s LnhtbFBLAQItABQABgAIAAAAIQBmzEJwwgAAANoAAAAPAAAAAAAAAAAAAAAAAJgCAABkcnMvZG93 bnJldi54bWxQSwUGAAAAAAQABAD1AAAAhwMAAAAA ">
a, b, h
x= a,b,h
y=f(x)
L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEAQCjn8sQA AADbAAAADwAAAGRycy9kb3ducmV2LnhtbESPQWvCQBSE70L/w/IK3nRTpa1GV6lCpBcRreL1kX3J BrNvQ3bV9N93C4LHYWa+YebLztbiRq2vHCt4GyYgiHOnKy4VHH+ywQSED8gaa8ek4Jc8LBcvvTmm 2t15T7dDKEWEsE9RgQmhSaX0uSGLfuga4ugVrrUYomxLqVu8R7it5ShJPqTFiuOCwYbWhvLL4WoV rFfnMjs1u+2mM+c6q7ZFNn0vlOq/dl8zEIG68Aw/2t9awfgT/r/EHyAXfwAAAP//AwBQSwECLQAU AAYACAAAACEA8PeKu/0AAADiAQAAEwAAAAAAAAAAAAAAAAAAAAAAW0NvbnRlbnRfVHlwZXNdLnht bFBLAQItABQABgAIAAAAIQAx3V9h0gAAAI8BAAALAAAAAAAAAAAAAAAAAC4BAABfcmVscy8ucmVs c1BLAQItABQABgAIAAAAIQAzLwWeQQAAADkAAAAQAAAAAAAAAAAAAAAAACkCAABkcnMvc2hhcGV4 bWwueG1sUEsBAi0AFAAGAAgAAAAhAEAo5/LEAAAA2wAAAA8AAAAAAAAAAAAAAAAAmAIAAGRycy9k b3ducmV2LnhtbFBLBQYAAAAABAAEAPUAAACJAwAAAAA= ">
a, b, h
L t1UKDXHTtVBSKC5JzEtJzMnPS7VVqkwtVrK34+UCAAAA//8DAFBLAwQUAAYACAAAACEAWip1C8AA AADbAAAADwAAAGRycy9kb3ducmV2LnhtbERPy4rCMBTdD/gP4QpuBk11BpFqlFIYdCEM42N/aa5t MbkpScbWvzeLgVkeznuzG6wRD/KhdaxgPstAEFdOt1wruJy/pisQISJrNI5JwZMC7Lajtw3m2vX8 Q49TrEUK4ZCjgibGLpcyVA1ZDDPXESfu5rzFmKCvpfbYp3Br5CLLltJiy6mhwY7Khqr76dcq+D6a 0puS+n35vB4u18/i/bgslJqMh2INItIQ/8V/7oNW8JHGpi/pB8jtCwAA//8DAFBLAQItABQABgAI AAAAIQDw94q7/QAAAOIBAAATAAAAAAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsB Ai0AFAAGAAgAAAAhADHdX2HSAAAAjwEAAAsAAAAAAAAAAAAAAAAALgEAAF9yZWxzLy5yZWxzUEsB Ai0AFAAGAAgAAAAhADMvBZ5BAAAAOQAAABAAAAAAAAAAAAAAAAAAKQIAAGRycy9zaGFwZXhtbC54 bWxQSwECLQAUAAYACAAAACEAWip1C8AAAADbAAAADwAAAAAAAAAAAAAAAACYAgAAZHJzL2Rvd25y ZXYueG1sUEsFBgAAAAAEAAQA9QAAAIUDAAAAAA== ">
конец
2.2. Блок – схема (рис. 3.2):

 

Рис. 3.2. Блок-схема алгоритма табулирования

3. Составление программы по блок-схеме из п.2.

3.1. Объявить переменные A, B, H, Y, X одинарной точности вещественного типа (Single).

3.2. Запросить ввод исходных данных с клавиатуры (Console.WriteLine()).

3.3. Открыть цикл для вычисления значения функции Y для аргумента X, изменяющегося от A до B с шагом H (For X = A To В Step H).

3.4. В цикле вычислить и вывести на экран значение функции Y(X) и соответствующего аргумента X.

3.5. Закрыть цикл (Next X) и завершить программу.

4. Выполнить программу и выписать результаты в отчёт (по аналогии с рис. 3.3).

 

x = 1 y = - 0.5 x = 1.6 y = - 0.126
x = 1.1 y = - 0.425 x = 1.7 y = - 0.77
x = 1.2 y = - 0.356 x = 1.8 y = - 0.032
x = 1.3 y = - 0.292 x = 1.9 y = 1.08 E-02
x = 1.4 y = - 0.232 x = 2 y = 5.10 E-02
x = 1.5 y = - 0.177    

 

Рис. 3.3. Результаты: 11 пар значений (x, y)

 

5. Из таблицы значений, полученной в п.4, найти и выписать отрезок, на котором функция f(x) меняет свой знак. В данном случае это отрезок [ 1.8, 1.9 ], т.к. f(1.8)< 0, а f(1.9)> 0.

6. На найденном отрезке [ 1.8, 1.9 ] запустить программу табулирования функции f(x) с шагом h =0.01.

7. Из полученных результатов найти и выписать две строки, где функция f(x) меняет знак:

x = 1.87 y = - 1.732Е-08 f(x) < 0

 

x = 1.88 y= 2.474Е-03 f(x) > 0

 

8. Вычислить середину выбранного отрезка [1.87, 1.88]: X1 =(1.87+1.88)/2 = 1.875 и значение функции в корне X1 (y = 3.743E-04).

9. Выписать результаты: значение корня (X1), значение функции в корне (y(X1)).

Вывод: значение X1 =1.875 является приближённым значением корня уравнения с точностью .

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 796 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2481 - | 2215 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.