Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Табличное умножение и деление




В начальном обучении математике велика роль вычислительных приемом. Формирование у школьников вычислительных навыков является одной из главных задач начального курса математики, поскольку вычислительные навыки необходимы как для дальнейшего обучения школьников, так и для их практической жизни. Поэтому важно, чтобы учитель имел глубокие представления о вычислительном приеме и вычислительном навыке. Эти навыки должны формироваться осознанно и прочно, так как на их базе строиться весь начальный курс обучения математике предусматривает, формирование вычислительных навыков на основе сознательного использования приемов вычислений.

Последнее становится возможным благодаря тому, что в программу включено знакомство с некоторыми важнейшими свойствами арифметический действий и вытекающими из них следствиями.
Одной из важнейших задач обучения математике младших школьников является формирование у них вычислительных навыков, основу которых составляет осознанное и прочное усвоение приемов устных и письменных вычислений. Вычислительная культура является тем запасом знаний и умений, который находит повсеместное применение, является фундаментом изучения математики и других учебных дисциплин.
В век компьютерной грамотности значимость навыков письменных вычислений, несомненно, уменьшилась. Использование ЭВМ во многом облегчает процесс вычислений. Но пользоваться техникой без осознания вычислительных навыков невозможно, да и микрокалькулятор не всегда может оказаться под рукой. Следовательно, владение вычислительными навыками необходимо. Научиться быстро и правильно выполнять письменные вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости для дальнейшего обучения.

Вычислительный прием - ряд последовательных операций (системы операций), выполнение которых приводит к нахождению результата требуемого арифметического действия над этими числами; причем выбор операций в каждом приеме определяется теми теоретическими положениями, которые используются в качестве его теоретической основы.

Различают операции основные и вспомогательные. Основными называют операции, сразу дающие результат (действия). Вспомогательными называют операции, которые лишь готовят к выполнению действия.

Формирование у школьников вычислительных навыков остаётся одной из главных задач начального обучения математики, поскольку вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении.

Назовём эти группы приёмов:

1. Приёмы, теоретическая основа которых – конкретный смысл арифметических действий.
К ним относятся: приёмы сложения и вычитания в пределах 10; приёмы табличного сложения и вычитания с переходом через десяток в пределах 20; приём нахождения табличных результатов умножения и деления; деления с остатком; приём умножения единицы и нуля. (6+2, 3-2- прибавление по частям)

2. Приёмы, теоретической основой которых служат свойства арифметических действий.
Это приёмы: сложения и вычитания для случаев вида 54 + – 20, 27 + – 3, 40 – 6; сложение и вычитание чисел больших, чем 100; приёмы письменного сложения и вычитания; приёмы умножения и деления для случаев вида 14 * 5, 5 * 14; аналогичные приёмы умножения и деления для чисел больших 100 и приёмы письменного умножения и деления.

3. Приёмы, теоретическая основа которых – связи между компонентами и результатами арифметических действий. (75:25, 25:3; 10-8, 8+2=10)
К ним относятся приёмы для случаев вида: 9 – 7, 21: 3, 60: 20.
При введении этих приёмов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный приём.

4. Приёмы, теоретическая основа которых – изменение результатов арифметических действий в зависимости от изменения одного из компонентов.
Это приёмы округления при выполнении сложения и вычитания чисел 46 + 19, 512 – 298 и приёмы умножения и деления на 5, 25, 50.

5. Приёмы, теоретическая основа которых – вопросы нумерации чисел.
Это приёмы для случаев вида: а + – 1, 10 + 6, 16 – 10, 57 * 10, 1200: 100; аналогичные приёмы для больших чисел.

6. Приёмы, теоретическая основа которых – правила. а·1, а·0.
Как видим, все вычислительные приёмы строятся на той или иной теоретической основе, причём в каждом случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительных приёмов.

Вычислительный навык – это высокая степень овладения вычислительными приёмами.

Приобрести вычислительные навыки – значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро.
Полноценный вычислительный навык характеризуется правильностью, осознанностью, обобщённостью, автоматизмом и прочностью.

Правильность – ученик правильно находит результат арифметического действия над данными числами, т.е. правильно выбирает операции, составляющие приём.

Осознанность – ученик осознаёт, на основе каких знаний выбраны операции и установлен порядок их выполнения. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решал пример и почему можно так решать.

Рациональность – ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный приём, т.е. выбирает те из возможных операций, выполнение которых легче других и быстрее приводит к результату арифметического действия. Это качество навыка может проявляться тогда, когда для данного случая существуют различные приёмы нахождения результата, и ученик, используя различные знания, может сконструировать несколько приёмов и выбрать более рациональный.

Обобщённость – ученик может применить приём вычисления к большему числу случаев, т.е. он способен перенести приём вычисления на новые случаи. Обобщённость так же, как и рациональность, связана с осознанностью вычислительного навыка.

Автоматизм – ученик выделяет и выполняет операции быстро и в свёрнутом виде, но всегда может вернуться к объяснению выбора системы операций. Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям: сложение и вычитание в пределах 10; сложение и вычитание в пределах 20; табличное умножение и деление.

Прочность – ученик сохраняет сформированные вычислительные навыки на длительное время.

Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением начального курса математики и использованием соответствующих методических приёмов.

Перед разработкой проекта урока математики по теме «Табличное умножение и деление» я уточнила понятие вычислительный прием, классификацию вычислитьльных приемов, методику ознакомления с вычислительными приемами; проанализировала методические различные подходы к введению табличного умножения.

В методике работы над каждым отдельным приёмом можно предусмотреть ряд этапов.





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 631 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.