Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


А) Метод симметричных составляющих




Мы здесь сообщим краткие сведения о методе симметричных составляющих. Сущность этого метода состоит в том, что каждый фазный ток (или фазное напряжение) заменяется тремя его составляющими:

(2-135)

(2-136)

(2-137)

Величины принимаются равными друг другу и равными одной трети суммы фазных токов:

(2-138)

Эти величины называются составляющими нулевой последовательности, так как они образуют три равных временных вектора с нулевым сдвигом между ними.

Если из каждого тока данной несимметричной системы вычесть его нулевую составляющую, то получим новую систему токов, сумма которых согласно (2-138) равна нулю:

(2-139)

Учитывая теперь (2-135) — (2-137), можем написать:

(2-140)

Здесь системы токов, стоящих в скобках, будем считать трехфазными симметричным системами. Однако, если принять, что порядки чередования фаз той и другой систем одинаковы, то их сумма даст симметричную систему, что в общем случае не будет соответствовать системе токов уравнения (2-139). Следовательно, мы должны считать, что одна из систем токов (2-140) имеет порядок чередования фаз, обратный по отношению к порядку чередования фаз другой. В соответствии с этим система токов называется системой прямой последовательности [порядок чередования этих токов обычно такой же, как и токов уравнения (2-139)], а система токов — системой обратной последовательности.

Для удобства вычислений вводится комплексный коэффициент

(2-141)

Умножение вектора на этот коэффициент не изменяет его абсолютного значения, но изменяет его аргумент на т. е. поворачивает вектор на угол в сторону вращения векторов. Очевидно, что умножение на а 2 дает поворот вектора на угол в ту же сторону. Также очевидно, что

(2-142)

Уравнения (2-135) — (2-137) после введения в них коэффициентов а и а 2 и с учетом (2-138) перепишем в следующем виде

(2-143)

(2-144)

(2-145)

Написанные уравнения позволяют при заданных токах найти их симметричные составляющие. Составляющие нулевой последовательности определяются по (2-138). Составляющие прямой и обратной последовательно­стей определяются следующим образом.

Умножим (2-144) на а и (2-145) на а 2. Сложив полученные уравнения с (2-143) и учитывая (2-142), будем иметь:

(2-146)

Если умножить (2-144) на а 2 и (2-145) на а, то, сложив три уравнения, получим:

(2-147)

Таким образом, по (2-138), (2-146) и (2-147) при заданных токах могут быть определены их симметричные составляющие (на рис 2-58 показаны токи и их симметричные составляющие).

Рис. 2-58. Несимметричная система таков и их симметричные составляющие.

Аналогичные уравнения получаются для симметричных составляющих заданной системы напряжений Фазные токи или напряжения в общем случае имеют составляющие всех трех последовательностей: линейные токи (при соединении треугольником) и напряжения могут иметь только составляющие прямой и обратной последовательностей.

В обычных случаях системы симметричных составляющих токов или напряжений можно рассматривать независимо одна от другой и при исследовании несимметричной нагрузки исходить из принципа наложения. Если, например, трехфазная система сопротивлений симметрична, то можно считать, что токи любой последовательности вызовут падения напряжения — активные и реактивные — только той же самой последовательности. В применении к трехфазным трансформаторам мы должны считать Z 12= const, т. е пренебречь изменением насыщения, или считать Z 12 = ∞, т е. пренебречь током холостого хода.

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 593 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.