Выбор способа наплавки обусловливается материалом детали, требуемыми физико-механическими свойствами наплавляемого слоя, геометрическими параметрами детали, износами и др.
Условно способы сварки и наплавки можно разделить на дуговые и бездуговые.
При наплавке под флюсом дуга горит между проволокой и изделием под слоем гранулированного флюса. Роликиспециального механизма падают в электродную проволоку в зону дуги.
Ток (переменный или постоянный прямой или обратной полярности) подводится к проволоке с помощью скользящего контакта, а к изделию – постоянным контактом. Дуга горит в газовом пузыре, который образуется в результате плавления флюса и металла.
Кроме того, расплавленный металл защищен от внешней среды слоем расплавленного флюса. По мере удаления дуги от зоны наплавки расплавленный флюс застывает и образует шлаковую корку, которая впоследствии легко отделяется от поверхности шва.
Флюс засыпается впереди дуги из бункера слоем толщиной 40–80 мм и шириной 40– 100 мм. Нерасплавленный флюс после наплавки используется повторно. Расплавленные электродный и основной металлы в сварочной ванне перемешиваются и при кристаллизации образуют шов.
Преимущественное применение находит наплавка проволокой (проволочным электродом). Однако в последнее время все большее распространение получает наплавка ленточными или комбинированными электродами.
К достоинствам наплавки под флюсом относятся: высокая производительность процесса, благодаря использованию больших токов, глубокому проплавлению, почти полному отсутствию потерь металла на угар и разбрызгивание (не более 3%); высокое качество наплавляемой поверхности в результате хорошей защиты флюсом сварочной ванны; незначительное количество неметаллических включений в металле шва; возможность легирования наплавляемого металла через флюс; лучшее использование тепла дуги (по сравнению с ручной сваркой расход электроэнергии уменьшается на 30– 40%); лучшие условия труда сварщика и ряд других.
Вместе с тем, этот вид наплавки имеет ряд недостатков: значительный нагрев изделия; повышенную текучесть расплавленных металла и флюса, что позволяет вести наплавку только в нижнем положении и наплавлять детали диаметром не менее 40 мм; необходимость в отдельных случаях повторной термической обработки; невозможность непосредственного наблюдения за формированием шва.
Наплавка под флюсом используется при изготовлении и ремонте конструкций и деталей ответственного назначения, которые должны быть надежными при эксплуатации в условиях низких и высоких температур.
В процессе наплавки можно в широких пределах изменять физико-механические свойства наплавленного металла за счет выбора соответствующих флюсов и электродных материалов.
Компоненты флюса: шлакообразующие (кварц), раскисляющие и легирующие (феррохром), газообразующие (древесная мука), ионизирующие (сода).
Различают плавленые и керамические флюсы и флюсосмеси.
Плавленые флюсы приготовляют сплавлением в печах компонентов, входящих в их состав, с последующей грануляцией.
Керамические флюсы включают в себя ферросплавы с температурой плавления в 1,5...2,0 раза выше, чем остальные компоненты.
Различают мелкозернистые (0,4...2,5 мм) и крупнозернистые (1,6...4,0 мм) флюсы. Плавленые флюсы имеют низкую стоимость, обеспечивают качественную защиту металла и его легирование марганцем и кремнием. Влияние на физико-механические свойства наплавленного металла достигается подбором соответствующего электрода.
Посредством керамических флюсов за счет имеющихся в их составе ферросплавов можно легировать наплавленный металл хромом, титаном, алюминием и другими металлами. Однако стоимость таких флюсов выше.
Флюсосмеси состоят из дешевого плавленого флюса с добавками чугунной стружки, графита и ферросплавов.
В зависимости от химического состава различают низкоуглеродистые (Св-08 и Св-12), углеродистые (НП-30 и НП-50), легированные (Св-12Г2, НП-50ХНТ) и высоколегированные (Св-20Х13, НП-ЗОХВ) проволоки.
Химический состав электродов оказывает меньшее влияние на свойства наплавленного металла, чем флюс, поскольку металл интенсивно перемешивается в сварочной ванне.
Вибродуговая наплавка отличается от других сварочных процессов наличием колебаний электродной проволоки с частотой 50–100 Гц и низким напряжением источника сварочного тока. Перенос металла электродной проволоки на деталь происходит за счет чередования электрических разрядов и коротких замыканий цепи.
Вибродуговую наплавку применяют для восстановления изношенных поверхностей стальных и чугунных деталей довольно широкой номенклатуры.
Процесс осуществляют на постоянном токе обратной полярности. Оптимальное напряжение при наплавке 17–20 В.
Для охлаждения детали применяют 3-4 %-ный раствор кальцинированной соды или 10-20 %-ный раствор технического глицерина. Количество жидкости, подаваемой в зону наплавки, регулируют краном, установленным на наплавочной головке. Струя жидкости не должна попадать в столб дуги, так как от этого нарушается процесс наплавки.
Толщина наплавляемого слоя зависит от соотношения скоростей подачи электродной проволоки и окружной скорости вращения детали. Чем больше скорость подачи проволоки и меньше окружная скорость вращения детали, тем толще будет наплавленный слой. С увеличением окружной скорости вращения детали, наплавляемый валик металла при прочих равных условиях наплавки становится тоньше и уже.
Если толщина наплавленного слоя должна быть минимальной, то применяют тонкую проволоку, а если требуется получить более толстый слой, то применяют проволоку большего диаметра.
При сварке и наплавке в среде защитных газов в зону горения дуги под небольшим давлением подается газ, который вытесняет воздух из этой зоны и защищает сварочную ванну от кислорода и азота воздуха.
В зависимости от применяемого газа сварка разделяется на сварку в активных (СО2, Н2, О2, и др.) и инертных (He, Ar, Ar+He и др.) газах. Сварку (наплавку) можно осуществлять как плавящимся, так и неплавящимся электродами.
Наибольшее распространение при восстановлении деталей подвижного состава получили сварка и наплавка в среде углекислого газа (СО2) – сварка плавящимся электродом (проволокой) с защитой сварочной ванны от воздуха углекислым газом. Такой способ является самым дешевым при сварке углеродистых и низколегированных сталей. Поэтому по объему производства он занимает одно из первых мест среди механизированных способов сварки плавлением.
Однако в процессе сварки углекислый газ под действием высоких температур диссоциирует: 2СО2<=>2СО+О2. Следовательно, при сварке и наплавке в среде СО2 необходимо предусматривать меры по раскислению наплавляемого металла. Эта задача решается использованием сварочных проволок диаметром 0,8–2 мм, в состав которых входят элементы раскислители. Чаще всего это кремний (0,6–1,0%) и марганец (1–2%). Образующиеся в процессе раскиcления окислы кремния и марганца всплывают на поверхность сварочной ванны и после кристаллизации металла удаляются.
Сварка в среде СО2 имеет целый ряд преимуществ: минимальную зону структурных изменений металла при высокой степени концентрации дуги и плотности тока; большую степень защиты сварочной ванны от воздействия внешней среды; существенную производительность; возможность наблюдения за формированием шва; возможность сваривать металл различной толщины (от десятых долей до десятков миллиметров), производить сварку в различных пространственных положениях, механизировать, автоматизировать технологический процесс; незначительную чувствительность к ржавчине и другим загрязнителям основного металла.
Недостатки: сильное разбрызгивание металла при токе больше 500 А, что требует постоянной защиты и очистки сопла горелки; интенсивное излучение открытой мощной дуги, требующее защиты сварщика; необходимость охлаждения горелки при значительных токах; осуществление сварки практически только на постоянном токе; наличие специальной проволоки.