Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы наискорейшего спуска




Градиентные методы

Градиентные методы безусловной оптимизации используют только первые производные целевой функции и являются методами линейной аппроксимации на каждом шаге, т.е. целевая функция на каждом шаге заменяется касательной гиперплоскостью к ее графику в текущей точке.

На k-м этапе градиентных методов переход из точки X k в точку Xk+1описывается соотношением:

Xk+1= Xk+ lk×Sk, (1.2)

где lk- величина шага, k- вектор в направлении Xk+1-Xk.

 

Методы наискорейшего спуска

Впервые такой метод рассмотрел и применил еще О. Коши в XVIII в. Идея его проста: градиент целевой функции f (X) в любой точке есть вектор в направлении наибольшего возрастания значения функции. Следовательно, антиградиент будет направлен в сторону наибольшего убывания функции и является направлением наискорейшего спуска. Антиградиент (и градиент) ортогонален поверхности уровня f (X) в точке X. Если в (1.2) ввести направление

,

то это будет направление наискорейшего спуска в точке Xk.

Получаем формулу перехода из Xkв Xk+1:

.

Антиградиент дает только направление спуска, но не величину шага. В общем случае один шаг не дает точку минимума, поэтому процедура спуска должна применяться несколько раз. В точке минимума все компоненты градиента равны нулю.

Все градиентные методы используют изложенную идею и отличаются друг от друга техническими деталями: вычисление производных по аналитической формуле или конечно-разностной аппроксимации; величина шага может быть постоянной, меняться по каким-либо правилам или выбираться после применения методов одномерной оптимизации в направлении антиградиента и т.д. и т.п.

Останавливаться подробно мы не будем, т.к. метод наискорейшего спуска не рекомендуется обычно в качестве серьезной оптимизационной процедуры.

Одним из недостатков этого метода является то, что он сходится к любой стационарной точке, в том числе и седловой, которая не может быть решением.

Но самое главное - очень медленная сходимость наискорейшего спуска в общем случае. Дело в том, что спуск является "наискорейшим" в локальном смысле. Если гиперпространство поиска сильно вытянуто ("овраг"), то антиградиент направлен почти ортогонально дну "оврага", т.е. наилучшему направлению достижения минимума. В этом смысле прямой перевод английского термина "steepest descent", т.е. спуск по наиболее крутому склону более соответствует положению дел, чем термин "наискорейший", принятый в русскоязычной специальной литературе. Одним из выходов в этой ситуации является использование информации даваемой вторыми частными производными. Другой выход - изменение масштабов переменных.

 





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 1159 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.