Одной из самых восхитительных особенностей живой природы является ее способность порождать потомство, обладающее характеристиками, сходными с характеристиками предыдущего поколения. Заимствованная у природы идея наследования решает проблему модификации поведения объектов и придает ООП исключительную силу и гибкость. Наследование позволяет, практически без ограничений, последовательно строить и расширять классы, созданные вами или кем-то еще. Начиная с самых простых классов, можно создавать производные классы по возрастающей сложности, которые не только легки в отладке, но и просты по внутренней структуре.
Последовательное проведение в жизнь принципа наследования, особенно при разработке крупных программных проектов, хорошо согласуется с техникой нисходящего структурного программирования (от общего к частному), и во многом стимулирует такой подход. При этом сложность кода программы в целом существенно сокращается. Производный класс (потомок) наследует все свойства, методы и события своего базового класса (родителя) и всех его предшественников в иерархии классов.
При наследовании базовый класс обрастает новыми атрибутами и операциями. В производном классе обычно объявляются новые члены данных, свойства и методы. При работе с объектами программист обычно подбирает наиболее подходящий класс для решения конкретной задачи и создает одного или нескольких потомков от него, которые приобретают способность делать не только то, что заложено в родителе. Дружественные функции позволяют производному классу получить доступ ко всем членам данных внешних классов.
Кроме того, производный класс может перегружать (overload) наследуемые методы в том случае, когда их работа в базовом классе не подходит потомку. Использование перегрузки в ООП всячески поощряется, хотя в прямом понимании значения этого слова перегрузок обычно избегают. Говорят, что метод перегружен, если он ассоциируется с более чем одной одноименной функцией. Обратите внимание, что механизм вызовов перегруженных методов в иерархии классов полностью отличается от вызовов переопределенных функций. Перегрузка и переопределение - это разные понятия. Виртуальные методы используются для переопределения функций базового класса.
Чтобы применить концепцию наследования, к примеру, с часами, положим, что следуя принципу наследования, фирма "Casio" решила выпустить новую модель, дополнительно способную, скажем, произносить время при двойном нажатии любой из существующих кнопок. Вместо того, чтобы проектировать заново модель говорящих часов (новый класс, в терминологии ООП), инженеры начнут с ее прототипа (произведут нового потомка базового класса, в терминологии ООП). Производный объект унаследует все атрибуты и функциональность родителя. Произносимые синтезированным голосом цифры станут новыми членами данных потомка, а объектные методы кнопок должны быть перегружены, чтобы реализовать их дополнительную функциональность. Реакцией на событие двойного нажатия кнопки станет новый метод, который реализует произнесение последовательности цифр (новых членов данных), соответствующей текущему времени. Все вышесказанное в полной мере относится к программной реализации говорящих часов.
3.4 Разработка классов
В классы разрабатываются для достижения определенных целей. Чаще всего программист начинает с нечетко очерченной идеи, которая постепенно, по мере разработки проекта, пополняется деталями. Иногда дело заканчивается несколькими классами, весьма похожими друг на друга. Чтобы избежать подобного дублирования кодов в классах, следует разбить их на две части, определив общую часть в родительском классе, а отличающиеся оставить в производных.
Объявление класса должно предшествовать его использованию. Как правило, прикладной программист пользуется готовыми базовыми классами, причем ему вовсе не обязательно разбираться во всех спецификациях и во внутренней реализации. Однако, чтобы использовать базовый класс C++, надо обязательно знать какие члены данных и методы вам доступны (а если применяется компонента C++Builder - еще и предоставляемые свойства и события).
3.4.1 Объявление базового класса
C++Builder дает вам возможность объявить базовый класс, который инкапсулирует имена своих свойств, данных, методов и событий. Помимо способности выполнять свою непосредственную задачу объектные методы получают определенные привилегии доступа к значениям свойств и данных класса.
Каждое объявление внутри класса определяет привилегию доступа к именам класса в зависимости от того, в какой секции имя появляется. Каждая секция начинается с одного из ключевых слов: private, protected и public. Листинг 3.1 иллюстрирует обобщенный синтаксис объявления базового класса.
class className
private:
<приватные члены данных> <приватные конструкторы> <приватные методы>
protected:
<защищенные члены данных> <защищенные конструкторы> <защищенные методы>
public:
<общедоступные свойства> <общедоступные члены данных> “збщедоступные конструкторы> <общедоступный деструктор> общедоступные методы>
Листинг 3.1. Объявление базового класса.
Таким образом, объявление базового класса на C++ предоставляет следующие права доступа и соответствующие области видимости:
• Приватные private имена имеют наиболее ограниченный доступ, разрешенный только методам данного класса. Доступ производных классов к приватным методам базовых классов запрещен.
• Защищенные protected имена имеют доступ, разрешенный методам данного и производных от него классов.
• Общедоступные public имена имеют неограниченный доступ, разрешенный методам всех классов и их объектов.
Следующие правила применяются при образовании различных секций объявления класса:
1. Секции могут появляться в любом порядке, а их названия могут встречаться повторно.
2. Если секция не названа, компилятор считает последующие объявления имен класса приватными. Здесь проявляется отличие объявлений класса и структуры - последняя рассматривается по умолчанию как общедоступная.
3. По мере возможности не помещайте члены данных в общедоступную секцию, если только вы действительно не хотите разрешить доступ к ним отовсюду. Обычно их объявляют защищенными, чтобы разрешить доступ только методам производных классов.
4. Используйте методы для выборки, проверки и установки значений свойств и членов данных.
5. Конструкторы и деструкторы являются специальными функциями, которые не возвращают значения и имеют имя своего класса. Конструктор строит объект данного класса, а деструктор его удаляет.
6. Методы (так же как конструкторы и деструкторы), которые содержат более одной инструкции C++, рекомендуется объявлять вне класса.
Листинг 3.2 представляет попытку наполнить объявление базового класса некоторым конкретным содержанием. Отметим характерное для компонентных классов C++Builder объявление свойства Count в защищенной секции, а метода SetCount, реализующего запись в член данных FCount - в приватной секции.
class TPoint { private:
int FCount; // Приватный член данных void _fastcall SetCount(int Value);
protected:
_property int Count = // Защищенное свойство
{ read= FCount, write=SetCount };
double x; // Защищенный член данных
double у; // Защищенный член данных public:
TPoint(double xVal, double yVal); // Конструктор |
double getX(); |
double getY();
Листинг 3.2. Объявление базовой компоненты TPoint.
Объявления и определения методов хранятся в разных файлах (с расширениями.h и.срр, соответственно). Листинг 3.3 показывает, что когда методы определяются вне класса, их имена следует квалифицировать. Синтаксис такой квалификации метода, определяющей его область видимости, имеет следующий вид:
<имя класса>::<имя метода>
TPoint::TPoint (double xVal, double yVal)
(// Тело конструктора
void _fastcall TPoint::SetCount(int Value)
{
l if (Value i= FCount) // Новое значение члена данных? {
FCount = Value; // Запись нового значения Update(); // Вызов метода Update } } double TPoint::getX()
// Тело метода getX, квалифицированного в классе^TPoint
}
Листинг 3.3. Определения конструктора и методов вне класса.
После того, как вы объявили класс, его имя можно использовать как идентификатор типа при объявлении объекта этого класса (например,
TPoint* MyPoint;).
3.4.2 Конструкторы и деструкторы
Как следует из названий, конструктор - это метод, который строит в памяти объект данного класса, а деструктор - это метод, который его удаляет. Конструкторы и деструкторы отличаются от других объектных методов следующими особенностями:
• Имеют имя, идентичное имени своего класса.
• Не имеют возвращаемого значения.
• Не могут наследоваться, хотя производный класс может вызывать конструкторы и деструкторы базового класса.
• Автоматически генерируются компилятором как public, если не были вами объявлены иначе.
• Автоматически вызываются компилятором, чтобы гарантировать надлежащее создание и уничтожение объектов классов.
• Могут содержать неявные обращения к операторам new и delete, если объект требует выделения и уничтожения динамической памяти.
Листинг 3.4 демонстрирует обобщенный синтаксис объявлений конструкторов и деструктора.
class className
{ public:
// Другие члены данных className(); // Конструктор по умолчанию | className(<список параметров;-);// Конструктор с аргументами | className(const className&); // Конструктор копирования
// Другие конструкторы "className(); // Деструктор
// Другие методы };
Листинг 3.4. Объявления конструкторов и деструктора.
Класс может содержать любое число конструкторов, в том числе ни одного. Конструкторы не могут быть объявлены виртуальными. Не помещайте все конструкторы в защищенной секции и старайтесь уменьшить их число, используя значения аргументов по умолчанию. Существует три вида конструкторов:
• Конструктор по умолчанию не имеет параметров. Если класс не содержит ни одного конструктора, компилятор автоматически создаст один конструктор по умолчанию, который просто выделяет память при создании объекта своего класса.
• Конструктор с аргументами позволяет инициализировать объект в момент его создания - вызывать различные функции, выделять динамическую память, присваивать переменным начальные значения и т.п.
• Конструктор копирования предназначен для создания объектов данного класса путем копирования данных из другого, уже существующего объекта этого класса. Такие конструкторы особенно целесообразны для создания копий объектов, которые моделируют динамические структуры данных. Однако, по умолчанию компилятор создает так называемые конструкторы поверхностного копирования (shallow copy constructors), которые копируют только члены данных. Поэтому если какие-то члены данных содержат указатели, сами данные не будут копироваться. Для реализации "глубокого" копирования в код конструктора надо включить соответствующие инструкции.
Класс может объявить только один общедоступный деструктор, имени которого, идентичному имени своего класса, должен предшествовать знак ~ (тильда). Деструктор не имеет параметров и может быть объявлен виртуальным. Если класс не содержит объявления деструктора, компилятор автоматически создаст его.
Обычно деструкторы выполняют операции, обратные тем, что выполняли соответствующие конструкторы. Если вы создали объект класса файл, то в деструкторе этот файл, вероятно, будет закрываться. Если конструктор класса выделяет динамическую память для массива данных (с помощью оператора new), то деструктор, вероятно, освободит выделенную память (с помощью оператора delete) и т.п.
3.4.3 Объявление производных классов
C++Builder дает возможность объявить производный класс, который наследует свойства, данные, методы и события всех своих предшественников в иерархии классов, а также может объявлять новые характеристики и перегружать некоторые из наследуемых функций. Наследуя указанные характеристики базового класса, можно заставить порожденный класс расширить, сузить, изменить, уничтожить или оставить их без изменений.
Наследование позволяет повторно использовать код базового класса в экземплярах производного класса. Концепция повторного использования имеет параллель в живой природе: ДНК можно рассматривать как базовый материал, который каждое порожденное существо повторно использует для воспроизведения своего собственного вида. <
Листинг 3.5 иллюстрирует обобщенный синтаксис объявления производного класса. Порядок перечисления секций соответствует расширений привилегий защиты и областей видимости заключенных в них элементов: от наиболее ограниченных к самым доступным.
class className: [^спецификатор доступа;”] parentClass {
<0бъявления дружественных классов>
private:
<приватные члены данных>
<приватные конструкторы>
<приватные методы> protected:
<защищенные члены данных>
<защищенные конструкторы>
<защищенные методы> public:
<общедоступные свойства>
<общедоступные члены данных>
<общедоступные конструкторы>
<общедоступный деструктор>
<общедоступные методы> _published:
•<общеизвестные свойства>
<общеизвестные члены данных>
<Объявления дружественных функций>
Листинг 3.5. Объявление производного класса.
Отметим появление новой секции с ключевым словом _ published - дополнение, которое C++Builder вводит в стандарт ANSI C++ для объявления общеизвестных элементов компонентных классов. Эта секция отличается от общедоступной только тем, что компилятор генерирует информацию RTTI о свойствах, членах данных и методах объекта и C++Builder организует передачу этой информации Инспектору объектов во время исполнения программы. В главе 6 мы остановимся на этом более подробно.
Помимо способности выполнять свою непосредственную задачу объектные методы получают определенные привилегии доступа к значениям свойств и данных других классов.
Когда класс порождается от базового, все его имена в производном классе автоматически становятся приватными по умолчанию. Но его легко изменить, указав следующие спецификаторы доступа базового класса:
• private. Наследуемые (т.е. защищенные и общедоступные) имена базового класса становятся недоступными в экземплярах производного класса.
• public. Общедоступные имена базового класса и его предшественников будут доступными в экземплярах производного класса, а все защищенные останутся защищенными.
Можно порождать классы, которые расширяют возможности базового класса:
он вполне приемлем для вас, однако содержит функцию, требующую небольшой доработки. Написание заново нужной функции в производном классе является пустой тратой времени. Вместо этого надо повторно использовать код в базовом классе, расширяя его настолько, насколько это необходимо. Просто переопределите в производном классе ту функцию базового класса, которая вас не устраивает. Подобным образом можно порождать классы, которые ограничивают возможности базового класса: он вполне приемлем для вас, но делает что-то лишнее.
Рассмотрим применение методик расширения и ограничения характеристик на примере создания разновидностей объекта кнопки - типичных производных классов, получаемых при наследовании базовой компоненты TButtonControl из Библиотеки Визуальных Компонент C++Builder. Кнопки различного вида будут часто появляться в диалоговых окнах графического интерфейса ваших программ.
Рис. 3.1 показывает, что базовый класс TButtonControl способен с помощью родительского метода Draw отображать кнопку в виде двух вложенных прямоугольников: внешней рамки и внутренней закрашенной области.
Чтобы создать простую кнопку без рамки (Рис. 3.2), нужно построить производный класс SimpleButton, использовав в качестве родительского TButtonControl, и перегрузить метод Draw с ограничением его функциональности (Листинг 3.6)
class SimpleButton: public: TButtonControl { public:
SimpleButton(int x, int y);
void Draw();
-SimpleButton() { }
};
SimpleButton::SimpleButton(int x, int y):
TButtonControl(x, y) { }
void SimpleButton::Draw()
{ ; outline->Draw();
}
Листинг 3.6. Ограничение характеристик базового класса.
Единственная задача конструктора объекта для SimpleButton - вызвать базовый класс с двумя параметрами. Именно переопределение метода SimpleButton:: Draw () предотвращает вывод обводящей рамки кнопки (как происходит в родительском классе). Естественно, чтобы изменить код метода, надо изучить его по исходному тексту базовой компоненты TButtonControl.
Теперь создадим кнопку с пояснительным названием (Рис. 3.3). Для этого нужно построить производный класс TextButton из базового TButtonControl, и перегрузить метод Draw с рас- Рис. 3.3. Кнопка с текстом, ширением его функциональности.
Листинг 3.7 показывает, что объект названия title класса Text создается конструктором TextButton, а метод
SimpleButton:-.Draw () отображает его. :
class Text { public:
Text(int x, int y, char* string) { } void Draw() { } };
class TextButton: public: TButtonControl {
Text* title;
public:
TextButton(int x, int y, char* title);
void Draw();
-TextButton() { });
TextButton::TextButton(int x, int y, char* caption)
TButtonControl(x, y) {
title = new Text(x, y, caption);
}
void TextButton::Draw () {
TextButton::Draw();
title->Draw();
}
Листинг 3.7. Расширение характеристик базового класса.
В заключение раздела с изложением методики разработки базовых и производных классов приводится фрагмент C++ программы (Листинг 3.8), в которой объявлена иерархия классов двух простых геометрических объектов: окружности и цилиндра.
Программа составлена так, чтобы внутренние значения переменных г-радиус окружности и h-высота цилиндра определяли параметры создаваемых объектов. Базовый класс Circle моделирует окружность, а производный класс Cylinder моделирует цилиндр.
class SimpleButton: public: TButtonControl { public:
SimpleButton (int x, int y);
void Draw();
-SimpleButton() { } );
SimpleButton::SimpleButton(int x, int y):
TButtonControl(x, y) { }
I void SimpleButton::Draw()
I { i outline->Draw();
1)
Листинг 3.6. Ограничение характеристик базового класса.
Единственная задача конструктора объекта для SimpleButton - вызвать базовый класс с двумя параметрами. Именно переопределение метода SimpleButton:: Draw () предотвращает вывод обводящей рамки кнопки (как происходит в родительском классе). Естественно, чтобы изменить код метода, надо изучить его по исходному тексту базовой компоненты TButtonControl.
Теперь создадим кнопку с пояснительным названием (Рис. 3.3). Для этого нужно построить производный класс TextButton из базового TButtonControl, и перегрузить метод Draw с рас- Рис. 3.3. Кнопка с текстом, ширением его функциональности.
Листинг 3.7 показывает, что объект названия title класса Text создается конструктором TextButton, а метод
SimpleButton:: Draw () отображает его.
const double pi = 4 * atan(l);
class Circle { protected: