В настоящее время широко применяется большое число различных полимеров.
Полиэтилен [—СН2—СН2—]n - термопласт, получаемый методом радикальной полимеризации при температуре до 320°С и давлении 120-320МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давления имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен характеризуется устойчивостью к агрессивным средам (кроме окислителей), влагонепроницаем, набухает в углеводородах и их галогенопроизводных. Хороший диэлектрик, может эксплуатироваться в пределах температур от —20 до +100°C. Облучением можно повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), упаковочный материал, заменители стеклотары.
Полипропилен [—СН(СН3)—СН2—]n — кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120—140 °С), чем полиэтилен. Имеет высокую механическую прочность, стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.
Полистирол - термопласт, получаемый радикальной полимеризацией
стирола. Устойчив к действию слабых растворов кислот и щелочей, алифатических углеводородов, растворим в спиртах, ароматических углеводородах и кетонах. Полистирол обладает высокой механической прочностью и диэлектрическими свойствами и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов.
Поливинилхлорид [—СН2—СНС1—]n -термопласт, изготовленный полимеризацией винилхлорида. Устойчив к действию растворов кислот, щелочей и солей. Растворим в циклогексаноне, тетрагидрофуране, ограничено — в бензоле и ацетоне. Трудногорюч, механически прочен. Диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал проводов и кабелей, а также как химически стойкий конструкционный материал, который можно соединять сваркой.
Политетрафторэтилен (фторопласт) [—CF2—CF2—]n - термопласт, получаемый методом радикальной полимеризации тетрафторэтилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям. Прекрасный диэлектрик. Имеет очень широкие температурные пределы эксплуатации (от —270 до +260 °С) (при 400 °С разлагается с выделением фтора). Не растворяется в органических растворителях, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий.
Полиметилметакрилат (плексиглас)
- термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен, устойчив к действию кислот, щелочей, бензина, масла, атмосферостоек. Растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах. Бесцветен и оптически прозрачен. Применяется в электротехнике, радиотехнике и приборостроении, лазерной технике, как конструкционный материал, а также как основа клеев.
Полиамид — термопласт, содержащий в основной цепи амидогруппу —NH—СО—, например, поли- -капроамид (капрон) [—СО—NH—(CH2)5—]n., полигексаметиленадипинамид (найлон) [—NH(CH2)6NHCO(CH2)4CO—]n, полидодеканамид [—NH—(СН2)11—СО—]n, и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0— 1,3 г/см3. Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами. Устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.
Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (СК), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают СК общего и специального назначения. К СК общего назначения относят бутадиеновый [—СН2—СН=СН—СН2—]n и бутадиен-стирольный [—СН2—СН=СН—СН2—] n— [—СН2—СН(С6Н5)—]n. Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из СК специального назначения, кроме эластичности характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью, бензо-, масло- и теплостойкостью, негорючестью, износостойкостью,