Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Программа, реализующая метод степенного преобразования локальных контрастов




% Считывание исходного файла изображения L
L=imread('lena.tif');
L=L(:,:,1);
imshow(L);
L=double(L)./255;
[N M z]=size(L);
% Задание размеров n и m локальной апертуры
n=15; m=n;
n1=fix(n/2); m1=n1;
a=L(1,1);b=L(1,M);c=L(N,1);d=L(N,M);
for i=1:n1;
for j=1:m1;
L1(i,j)=a; L3(i,j)=b; L6(i,j)=c; L8(i,j)=d;
end;
end;
L2=L(1,1:M); L02=L2;
for i=1:n1-1;
L2=[L2;L02];
end;
L7=L(N,1:M); L07=L7;
for i=1:n1-1;
L7=[L7;L07];
end;
L4=L(1:N,1); L4=L4'; L04=L4;
for i=1:m1-1;
L4=[L4;L04];
end;
L4=L4';
L5=L(1:N,M); L5=L5'; L05=L5;
for i=1:m1-1;
L5=[L5;L05];
end;
L5=L5';
L1=[L1;L4]; L1=[L1;L6]; L1=L1';
L2=[L2;L]; L2=[L2;L7]; L2=L2';
L3=[L3;L5]; L3=[L3;L8]; L3=L3';
L1=[L1;L2]; L1=[L1;L3];
Lr=L1';
F=ones(n,m);
Lser=filter2(F,Lr,'same')/(n*m);
C=abs(Lr-Lser)./(Lr+Lser+eps);
% Степень преобразования локальных контрастов alfa
аlfa=.55;
C=C.^.alfa;
for i=1+n1:N+n1;
disp(i)
for j=1+m1:M+m1;
if j==1+m1;
D=0;
for a=-n1:n1;
for b=-m1:m1;
D(n1+1+a,m1+1+b)=Lr(i+a,j+b);
end;
end;
end;
if j>1+m1;
for a=-n1:n1;
D(n1+1+a,m+1)=Lr(i+a,j+m1);
end;
D=D(1:n,2:m+1);
end;
if Lr(i,j)>=Lser(i,j);
Lvyh(i,j)=Lser(i,j)*(1+C(i,j))/(1-C(i,j)+eps);
else
Lvyh(i,j)=Lser(i,j)*(1-C(i,j))/(1+C(i,j));
end;
end;
end;
figure, imshow(Lvyh);

а) б)
в)

Рис. 2. Результаты компьютерного моделирования метода степенного преобразования локальных контрастов: а) исходное изображение; б) изображение а), обработанное предложенным методом при значении степени преобразования локальных контрастов и размерах локальной апертуры ; в) изображение а), обработанное предложенным методом при значении степени преобразования локальных контрастов и размерах локальной апертуры .

Адаптивное повышение контрастности изображений

Одной из наиболее удобных форм представления информации при диагностировании материалов и изделий в неразрушающем контроле, органов человека в медицине и иных областях является изображение. Это приводит к необходимости развития способов диагностики с использованием разнообразных методов. Однако одним из существенных недостатков этих методов является то, что в большинстве своем они обеспечивают формирование низкоконтрастных изображений. Поэтому основная цель методов улучшения состоит в преобразовании изображений к такому виду, что делает их более контрастными и, соответственно, более информативнее [1]. Довольно часто на изображении присутствуют искажения в определенных локальных окрестностях, которые вызваны дифракцией света, недостатками оптических систем или розфокусировкой. Это приводит к необходимости выполнения локальных преобразований на изображении. Иными словами, такой адаптивный подход дает возможность выделить информативные участки на изображении и соответствующим образом их обработать. Изложенным требованиям отвечают методы адаптивного преобразования локального контраста [2]. Методы этого класса можно представить обобщенной структурной схемой (рис. 1), где использованы такие обозначения:

- исходное изображение и его элемент с координатами соответственно;

- контраст элемента изображения с координатами ;

- преобразованное значение контраста ;

- характеристики локальных окрестностей ( - энтропия, - среднеквадратичное отклонение, - функция протяженности гистограммы);

- элемент обработанного изображения с координатами .

Рис. 1. Обобщенная структурная схема методов улучшения изображений с использованием адаптивного преобразования локальных контрастов.

Основные шаги реализации методов адаптивного преобразования локальных контрастов такие:

Шаг 1. Для каждого элемента изображения вычисляют значение локального контраста в текущей окрестности с центром в элементе с координатами .

Шаг 2. Вычисляют локальную статистику для текущей скользящей окрестности .

Шаг 3. Преобразуют (усиливают) локальный контраст , употребляя для этого нелинейные функции и учитывая локальную статистику текущей скользящей окрестности .

Шаг 4. Восстанавливают значение яркости изображения с усиленным локальным контрастом.

Шаги 1 и 2 могут выполняться в различной последовательности или параллельно.

Проанализируем более детально реализацию шага 3 вышеупомянутого метода. Его суть состоит в том, что для преобразования локальных контрастов используют нелинейные монотонные функции, а для формирования адаптивной функции преобразования локального контраста выбирают степенную функцию и задают минимальное и максимальное значения показателя степени . Адаптация состоит в формировании дополнительного слагаемого к путем его определения на основе локальных статистик в скользящих окрестностях. В качестве параметров, которые будут характеризовать скользящие окрестности, используются функция протяженности гистограммы , энтропия и среднеквадратическое отклонение значений яркостей элементов скользящей окрестности. Поэтому, в зависимости от поставленной задачи, методы данного класса могут отличаться как функцией преобразования локального контраста, так и характеристикой скользящей окрестности.

Рассмотрим более детально предложенные локально-адаптивные методы улучшения изображений, проанализируем использование характеристик локальных окрестностей в выражениях преобразования локальных контрастов и обоснуем их выбор.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 686 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2628 - | 2445 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.