.


:




:

































 

 

 

 





 

1. .

2. . .

3. . . n = 2 . , n n + 1:

(1 + x) n + 1 = (1 + x) n (1 + x) ³(1 + n)(1 + x) = 1 + (n + 1) x + nx 2³ 1 + (n + 1) x.

4. . , . , c .

. :

y (n). x (n) £ y (n) .

3. . , limn→∞ n k/2 n = 0, limn→∞n(a 1/n− 1) = ln a, a > 0.

. (a) k = 1. :

0 £limn→∞ n /2 n £limn→∞2 n /n(n 1) = 0.

k:

. .

() (. 4)

.

> 1 , . a n = [ zn ] zn, a n £ zn £a n + 1 .

,

. £ 1 b = 1/ a.

4. . limn→∞ x n = +∞. , limn→∞(x1++xn)/n= +∞.

. : , ∀M∃n1: ∀n>n1 x n> 2M , ∀M∃n2: ∀n>n2¢¢(x 1++ x n)/n>M.

n2> 2n1.

5. . ∀n∈Npn> 0 limn→∞pn = p. , limn→∞(p1...pn)1/n= p.

. limn→∞pn = p ⇔∀ε > 0 ∃n0 = n0(ε): ∀n > n0 |pn−p| < ε. limn→∞(p1...pn)1/n= limn→∞(p1... )1/n limn→∞(...pn)1/n =

= 1×limn→∞ (...pn)1/n. :

£(...pn)1/n£ .

limn→∞ = limn→∞ = 1, .

6. . = e, , limn→∞n/(n!)1/n = e.

. : limn→∞yn/yn−1= a, limn→∞ = a. , pn = yn/yn−1. yn =nn/n!:

7. . , an = (1 + 1/n)n+p , p≥ ½.

. . ( y = ln x).

(n + p)(ln(n + 1) − lnn) ∨ (n + p +1)(ln(n + 2) − ln(n + 1)).

f(x) = (x + p)(ln(x + 1) − lnx). f¢(x) = (ln(x + 1) − lnx) + (x + p) f¢¢ = > 0. p ≥ ½ f¢(x) (f¢¢> 0) limx→+∞f¢(x) = 0, f¢(x) < 0 f(x) . p £ ½ f¢(x) x<p/(1−2p) x>p/(1−2p). limx→+∞f ¢(x) = 0, f ¢(x) > 0 x > p/(1−2p), x f(x) .

.

8.. , ∀r ∈ Q: |r| < 1 1+ r£er£ 1 + r/(1 - r).

. . , (1 + 1/x)x<e, , xln(1 + 1/x) < 1 ⇒ln(1+ t) <t, t = 1/x.

. , (1 + 1/x)x+1>e . , y = lnx .

10. . { x n} , .. ∃c > 0: ∀n ∈ N <c. , { x n} .

. y n . , . : ∀ε > 0 ∃n0 = n0(ε): ∀k,m> n0 | y ky m| < ε

| x kx m| £ | y ky m| = | x m+1x m|+ + | x kx k−1| <ε

{ x n} , .

. , : x n = sgn(cos(πx))×1/n.

11. . 0 £ x m+n£ x m + x n. , ∃limn→∞ x n/n.

. x n/n y n. , { } , :

, , , , :

12. . ,

(a) n→∞ (a n + b n) £ n→∞ a n + n→∞ b n, ;

(b) limn→∞ a n = a n→∞ b n = b, n→∞ a n b n = ab;

(c) n→∞ a n = − n→∞(− a n).

(a) {nk}, , . , , , . . .

(b) .

(c) .

13. . limn→∞ a n = +∞. , ∃minnN a n.

.

14. . limn→∞ a n = a. , { a n} , , .

.

15. . s n = a 1 + + a n → ∞, a k> 0, limn→∞ a n = 0. , { s n} [0;1].

. 29

16. . limn→∞(s n+1s n) = 0 , limn→∞ s n, l = n→∞ s n, L = n→∞ s n. , { s n} [ l; L ].

. , ε- a∈ (l; L) . ∃N = N(ε): | x n+1x n| < 2ε n>N. ε> 0, l, a L .

l , ∃ x p1 ∈Uε(l): p1 >N. ∃ x q1∈U

ε(L): q1 >N.

n>N 2ε, ∃ x r1∈Uε(a): p1 <r1 <q1.

x p2∈Uε(l): p2 >p1 x q2∈Uε(L): q2 >q1, x r2∈Uε(a): p2 <r2 <q2.

, , a.

17. .

(a) a n> 0 limn→∞ a n = 0. , n , a n>max(a n+1, a n+2,...).

(b) a n> 0 n→∞ a n = 0. , n , a n<min(a 1, a 2,..., a n−1).

- , .

 

 

[1] . .

[2] .. , .. , .. . , 4- , . .: , 2004. 640 .

[3] . ., . . : 2- . I: .: . 7- . .: , 2005. 648 .

 

 





:


: 2015-10-01; !; : 1507 |


:

:

! . .
==> ...

1845 - | 1641 -


© 2015-2024 lektsii.org - -

: 0.034 .