Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Архивация - сжатие одного или более файлов с целью экономии памяти и размещения сжатых данных в одном архивном файле.

Архивация данных

Сжатие данных (англ. datacompression) — алгоритмическое преобразование данных, производимое с целью уменьшения их объёма иприменяется для более рационального использования устройств хранения и передачи данных.

Синонимы — упаковка данных, компрессия, сжимающее кодирование, кодирование источника. Обратная процедура называется восстановлением данных (распаковкой, декомпрессией).

Сжатие основано на устранении избыточности, содержащейся в исходныхданных. Простейшим примером избыточности является повторениев тексте фрагментов (например, слов естественного или машинного языка). Подобная избыточность обычно устраняется заменой повторяющейся последовательности ссылкой на уже закодированный фрагмент с указанием его длины. Другой вид избыточности связан с тем, что некоторые значения в сжимаемых данных встречаются чаще других. Сокращение объёма данных достигается за счёт замены часто встречающихся данных короткими кодовыми словами, а редких — длинными (энтропийное кодирование). Сжатие данных, не обладающих свойством избыточности (например, случайный сигнал или шум, зашифрованные сообщения), принципиально невозможно без потерь.

Таким образом архивация информации, хранящейся в компьютере, является важной частью работы на нем. Во-первых, процесс архивации позволяет создать резервные копии наиболее важных файлов на случай непредвиденных ситуаций в работе. Во-вторых, архивирование позволяет увеличить объем свободного дискового пространства на жестком диске за счет архивирования неиспользуемых файлов и удаления их с диска.

 

Принципы сжатия данных

В основе любого способа сжатия лежит модель источника данных, или, точнее, модель избыточности. Иными словами, для сжатия данных используются некоторые априорные сведения о том, какого рода данные сжимаются. Не обладая такими сведениями об источнике, невозможно сделать никаких предположений о преобразовании, которое позволило бы уменьшить объём сообщения. Модель избыточности может быть статической, неизменной для всего сжимаемого сообщения, либо строиться или параметризоваться на этапе сжатия (и восстановления). Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспециализированные алгоритмы, применяемые для работы с данными, обладающими хорошо определёнными и неизменными характеристиками. Подавляющая часть достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Все методы сжатия данных делятся на два основных класса:

§ Сжатие без потерь

§ Сжатие с потерями

При использовании сжатия без потерь возможно полное восстановление исходных данных, сжатие с потерями позволяет восстановить данные с искажениями, обычно несущественными с точки зрения дальнейшего использования восстановленных данных. Сжатие без потерь обычно используется для передачи и хранения текстовых данных, компьютерных программ, реже — для сокращения объёмааудио- и видеоданных, цифровых фотографий и т. п., в случаях, когда искажения недопустимы или нежелательны. Сжатие с потерями, обладающее значительно большей, чем сжатие без потерь, эффективностью, обычно применяется для сокращения объёма аудио- и видеоданных и цифровых фотографий в тех случаях, когда такое сокращение является приоритетным, а полное соответствие исходных и восстановленных данных не требуется.

 

Коэффициент сжатия

Коэффициент сжатия — основная характеристика алгоритма сжатия. Она определяется как отношение объёма исходных несжатых данных к объёму сжатых, то есть:

k = S o/ S c,

где k — коэффициент сжатия,

S o — объём исходных данных,

S c — объём сжатых.

Таким образом, чем выше коэффициент сжатия, тем алгоритм эффективнее. Следует отметить:

§ если k = 1, то алгоритм не производит сжатия, то есть выходное сообщение оказывается по объёму равным входному;

§ если k < 1, то алгоритм порождает сообщение большего размера, нежели несжатое, то есть, совершает «вредную» работу.

Ситуация с k < 1 вполне возможна при сжатии. Принципиально невозможно получить алгоритм сжатия без потерь, который при любых данных образовывал бы на выходе данные меньшей или равной длины. Обоснование этого факта заключается в том, что поскольку число различных сообщений длиной n бит составляет ровно 2 n, число различных сообщений с длиной меньшей или равной n (при наличии хотя бы одного сообщения меньшей длины) будет меньше 2 n. Это значит, что невозможно однозначно сопоставить все исходные сообщения сжатым: либо некоторые исходные сообщения не будут иметь сжатого представления, либо нескольким исходным сообщениям будет соответствовать одно и то же сжатое, а значит их нельзя отличить.

Коэффициент сжатия может быть как постоянным (некоторые алгоритмы сжатия звука, изображения и т. п., например А-закон, μ-закон, ADPCM, усечённое блочное кодирование), так и переменным. Во втором случае он может быть определён либо для каждого конкретного сообщения, либо оценён по некоторым критериям:

§ средний (обычно по некоторому тестовому набору данных);

§ максимальный (случай наилучшего сжатия);

§ минимальный (случай наихудшего сжатия);

или каким-либо другим.

Коэффициент сжатия с потерями при этом сильно зависит от допустимой погрешности сжатия или качества, которое обычно выступает как параметр алгоритма. В общем случае постоянный коэффициент сжатия способны обеспечить только методы сжатия данных с потерями.

Допустимость потерь

Основным критерием различия между алгоритмами сжатия является описанное выше наличие или отсутствие потерь. В общем случае алгоритмы сжатия без потерь универсальны в том смысле, что их применение безусловно возможно для данных любого типа, в то время как возможность применения сжатия с потерями должна быть обоснована. Для некоторых типов данных искажения не допустимы в принципе. В их числе

§ символические данные, изменение которых неминуемо приводит к изменению их семантики: программы и их исходные тексты, двоичные массивы и т. п.;

§ жизненно важные данные, изменения в которых могут привести к критическим ошибкам: например, получаемые с медицинской измерительной аппаратуры или контрольных приборов летательных, космических аппаратов и т. п.;

§ многократно подвергаемые сжатию и восстановлению промежуточные данные при многоэтапной обработке графических, звуковых и видеоданных.

Системные требования алгоритмов

Различные алгоритмы могут требовать различного количества ресурсов вычислительной системы, на которых они реализованы:

§ оперативной памяти (под промежуточные данные);

§ постоянной памяти (под код программы и константы);

§ процессорного времени.

В целом, эти требования зависят от сложности и «интеллектуальности» алгоритма. Общая тенденция такова: чем эффективнее и универсальнее алгоритм, тем большие требования к вычислительным ресурсам он предъявляет. Тем не менее, в специфических случаях простые и компактные алгоритмы могут работать не хуже сложных и универсальных. Системные требования определяют их потребительские качества: чем менее требователен алгоритм, тем на более простой, а следовательно, компактной, надёжной и дешёвой системе он может быть реализован.

Так как алгоритмы сжатия и восстановления работают в паре, имеет значение соотношение системных требований к ним. Нередко можно усложнив один алгоритм значительно упростить другой. Таким образом, возможны три варианта:



<== предыдущая лекция | следующая лекция ==>
 | Основные стехиометрические законы
Поделиться с друзьями:


Дата добавления: 2018-11-12; Мы поможем в написании ваших работ!; просмотров: 287 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2498 - | 2247 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.