Таким образом, раковины предохранены от врагов, находятся под постоянным наблюдением, и если неблагоприятные условия обнаружатся, клетки можно переместить. Раковины перекладывают по мере их роста в большие клетки. Трехлетние раковины подвергают предложенной Микимото операции: с живого животного осторожно, чтобы не повредить ткани, сдирают верхний слой его, который необходим для образования жемчуга. В него заключают маленький, тщательно выточенный перламутровый шарик, перевязывают и создают таким образом «жемчужный мешок». Этот мешок вкладывают в другой экземпляр, в котором уже будет образовываться жемчужина. Таким образом, приходится жертвовать половиной выращенных экземпляров, не считая того, что сама по себе сложная и кропотливая операция, требующая большой осторожности и огромного навыка, может не удаться.
Оперированные раковины, в которых должен образоваться жемчуг, помещают в большие проволочные клетки; в одной клетке бывает от ста до ста сорока раковин. Клетки точно регистрируют, подвешивают по шестидесяти штук к одному плоту и опускают в воду; плоты соединяют по двенадцати штук – они содержат таким образом до семидесяти тысяч раковин.
Лишь дважды в год клетки извлекают из воды и прочищают, но они находятся под постоянным наблюдением. Все это время производят точное изучение температуры воды, течений и планктона, служащего моллюскам для питания. Перемещая плоты, погружая клетки в воду и поднимая их, животным предоставляют самые благоприятные условия для их жизни и, значит, для создания жемчуга. Раковины остаются в воде в течение семи лет, и лишь по истечении этого срока из них извлекают жемчужины.
Любопытные опыты Микимото научили человека пользоваться живым организмом, чтобы при его помощи растить камень. Эта мысль весьма заманчива, и возможно, что ученым удастся в будущем еще шире использовать животный мир для своих целей. Разводя нужных бактерий, мы научимся в больших бассейнах получать из соляных растворов самородную серу. Культуры каких‑либо микроорганизмов будут готовить сколько угодно селитры из ненужных азотистых отбросов.
В озерах разведение диатомовых водорослей будет приводить к накоплению чистого опала на дне и чистейших алюминиевых руд в растворе. Уже сейчас пробуют удобрять поля некоторыми видами бактерий.
Мне кажется, что эта фантастическая картина осуществится, может быть, и не в столь далеком будущем и мир мельчайших бактерий подчинится торжествующему уму ученого![24]
О ледяных цветах и о льде
Наступила зима, начались морозы. Встав утром рано, я увидел, что все окно было покрыто цветами мороза; какие‑то причудливые ветки, листья и цветы красивым узором извивались на стекле окна, а навстречу им свешивались другие ветки все таких же цветов. На улице шел снег, и красивые снежинки пушистым покровом ложились на землю. Я долго любовался их красивыми очертаниями на рукаве своего пальто и вглядывался в острые края шестиугольных звездочек. Река по берегам покрылась ледяным покровом, а с моста свешивались льдинки – сосульки замерзших струек воды…
Для чего я описываю картину зимы и какое отношение имеет она к нашей минералогии? Я рассказал, как в одно прекрасное зимнее утро я наблюдал начало образования одного из важнейших, но плохо изученных минералов нашей природы – льда, и в своей картине я только перечислил те разнообразные внешние формы, которые лед, то есть твердая вода, может принимать.
Узоры на окне и отдельные снежинки – прекрасные кристаллики этого минерала. Правда, благодаря очень быстрой кристаллизации они не выросли в большие, правильно образованные со всех сторон кристаллы, но привели к таким образованиям, которые мы называем кристаллическими скелетами. Из таких же кристаллов состоит и фирновый лед глетчеров, и лед замерзшей реки.
Твердая вода – временный, периодический минерал, но мы прекрасно знаем, что есть области, где лед является величайшей редкостью, и другие – где он никогда не пропадает. Так, на жарком юге почти не знают этого минерала, а в столице Ирана, Тегеране, устраивают особые бассейны из глины, окруженные высокими стенками, которые должны защищать воду от лучей солнца. В редкие ночные заморозки здесь образуется тонкий слой льда, который аккуратно собирают, раньше чем он успеет днем растаять, и отвозят в особое помещение под землей, где его засыпают плотно глиной.
Совсем иная судьба этого минерала на севере или в полярных областях. Здесь это типичная горная порода, «окаменелый лед», и недаром на севере Якутской области и на островах Северного Ледовитого океана мы встречаем среди пластов глины, песка и наносов слои льда, как нормальной горной породы. Здесь лед заменяет стекло; так, известный американский полярный исследователь В. Стефенсон описывает хижины эскимосов реки Медной в полярной Канаде: окна этих хижин были застеклены пластинами прекрасного озерного льда.
Но как ни обычен лед в нашей жизни и в самой природе, он все‑таки еще очень мало изучен и нередко встречается в таких необычайных образованиях, что трудно разгадать их происхождение. О некоторых из них я и хочу рассказать в этом очерке.
Во время наших хибинских экспедиций за Полярный круг нас поразило следующее явление. По утрам, после ясных морозных ночей, мы наблюдали на площадках многочисленные тонкие иголочки льда, стоявшие вертикально в виде изящных блестящих на солнце стебельков. На своих концах они несли песчинки и гальки различной величины, которые они, вырастая, подняли с поверхности земли. С первого взгляда иголки малозаметны под такой почти сплошной крышкой галек, и лишь вблизи бывает видно целое поле прозрачных ледяных стебельков.
Длина ледяных кристалликов бывает различна: то они достигают одного‑двух сантиметров, то вытягиваются до десяти и даже до двенадцати сантиметров. Особенно длинные волокна можно видеть в защищенных от ветра местах, под большими камнями, в углублениях. Иголочки имеют толщину лишь 0,25–0,5 миллиметра.
Ледяные стебельки редко стоят поодиночке. Обыкновенно несколько стебельков срастаются вместе в столбик и сообща поднимают гальку. Под более крупными камнями, до 12–15 сантиметров в диаметре, кристаллики не срастаются группами, а располагаются сплошным бордюром по краям камешка. Иногда, по‑видимому, у растущих игл нет достаточной силы поднять такую гальку с поверхности земли, и они приподнимают ее лишь с одного края.
Эта интересная форма кристаллизации льда встречается не только в Хибинах. Она, видимо, довольно распространена и на севере, и в странах с умеренным климатом.
Наблюдали это явление в Бугульминском районе Куйбышевской области и на Амуре. Несколько исследователей отмечают его в высоких областях Альп. На многочисленных шведских болотах образуются иногда целые заросли таких же тонких ледяных игл, накрытых сверху гальками и песчинками.
Не менее распространены они и в Японии и хорошо известны там под названием «симобасира» (бруски инея).
Мелкие, тонкие, казалось бы, ничтожные иголочки льда все вместе, сообща, совершают значительную работу постепенного перемещения галек. Поднимая их на своих головках, кристаллики утром при таянии слегка изгибаются навстречу солнцу, и гальки падают уже не на то место, откуда их поднял лед. Так понемногу, день за днем, кристаллики сортируют почву, на которой они вырастают; приподнимают более крупнозернистые составные части почвы и передвигают их по глинистой поверхности площадок к востоку.
Почему же образуются эти ледяные стебельки? На этот вопрос мы имеем много ответов, но ни одного, который бы полностью выяснил странное, но красивое явление.
Вот другой любопытный случай со льдом. В знаменитой Илецкой Защите, около Оренбурга, которую я описал в очерке о соли, есть старая разработка, заполненная водой и превратившаяся в соляное озеро. Тысячи больных собираются под знойным солнцем на его берегах; насыщенная солью вода настолько плотна, что купающиеся не могут пойти ко дну. Красивые белоснежные скалы западной стороны состоят из кристаллической соли причудливых очертаний; тяжелые волны соляного озера отшлифовывают их, местами образуя глубокие пещеры и впадины. На поверхности вода обжигает. По измерениям Л. Ячевского, в июле температура воды днем достигает 36 °C, однако по мере углубления она быстро падает. Уже на глубине пяти метров она опускается до 1–2 °C ниже нуля, а на глубинах в двадцать метров господствует холод; температура там 5 °C ниже нуля, и это в самое знойное время лета!
Какие интересные минералы образуются там, в глубинах, и как странно растет лед зимой, снизу вверх! Но этого еще мало: в той же Илецкой Защите другое явление привлекает наше внимание. На северо‑восток от озера возвышается гипсовая гора со следами казачьего «острога». К крутому южному склону прилепился ряд домиков: обитатели их пользуются гипсовыми скалами как ледниками. В некоторых местах достаточно прислонить к каменной стене какую‑либо постройку и тем изолировать эту часть скалы, чтобы получить естественный ледник с низкими температурами, так как из трещин и пустот в гипсе «несет сильным холодом». Я лично испытал эту холодную струю воздуха в нескольких ледниках, и это явление не могло не поразить своей необычайностью, особенно в знойный летний день. Очевидно, оно стоит в связи с соляным озером или вообще залежами соли, так как на северной и западной сторонах этой горы «холода» не наблюдается.
Снова загадка, но она невольно напоминает нам другое явление, которое, по‑видимому, имеет связь с нашими пещерами‑ледниками. Это знаменитая Кунгурская ледяная пещера на Урале.
В этом лабиринте ходов, некогда вырытых подземной рекой, особенно замечательными являются залы, расположенные у входа. Один из них называется бриллиантовым залом и весь украшен ледяными цветами – кристаллами. Это не маленькие звездочки снежинок, которые нужно во много раз увеличить, чтобы получить такие, как изображены на нашем рисунке, – это целые большие пластинки шестиугольной формы, величиной с ладонь. Они состоят из нежных, очень тонких иголочек и пластинок, как бы искусственной филигранной работы. Они свешиваются гирляндами или целым лесом покрывают стены пещеры, сверкая при свете лампы или зажженной пакли с керосином.
Вот где во всей красоте растет лед как настоящий кристаллический минерал Земли!
Много еще разных форм принимает лед на нашей земной поверхности. Я хотел бы, чтобы в зимние дни читатель внимательно изучал перистые рисунки мороза на окнах, чтобы с лупой в руке наблюдал он снежинки, зарисовывал летом форму градинок, а путешествуя высоко в горах, внимательно следил за льдом и его судьбой среди других камней и минералов.
И чем больше собственной инициативы и интереса проявит читатель, тем глубже и яснее поймет он природу во всей ее красоте и многообразии.
Вода и ее история
Казалось бы, что нового и интересного можно узнать об этом важном минерале Земли?
Мы слишком привыкли к воде в нашем повседневном обиходе, слишком обычны для нас дождь, течения рек, гладь озер и морей. Мы даже не задаем себе вопроса: всегда ли это было так и не было ли периодов в истории нашей планеты, когда эта вода далеко не имела того значения, какое имеет сейчас?
Не только в обыденном представлении человека, но и в истории развития научной мысли мы сплошь и рядом встречаемся с тем, что самые обычные явления природы не привлекают достаточно нашего внимания. Так, нужен был пытливый взгляд знаменитого физика Ньютона, чтобы многие тысячелетия падающее на землю яблоко однажды все же возбудило вопрос о сущности самых «простых» явлений тяготения.
Более ста лет тому назад, в первые годы Французской революции, Лавуазье развивал свои идеи о воде и тепле. Ломались старые, установившиеся взгляды – новые, глубоко «еретические» идеи раскрывали природу воды: именно тогда установили, что она состоит из двух летучих газов.
Вместо привычных картин потоков, ручьев, подвижных масс этого жидкого тела Земли, Лавуазье рисовал фантастические картины того состояния, в которое перешла бы Земля, если бы понизилась температура. Холод планеты Юпитера охватил бы поверхность Земли, а вода и некоторые газы застыли бы в твердые тела. Разве не новый мир создался бы в этой обстановке? Разве среди гор и скал льда мы узнали бы нашу подвижную и животворящую воду? Так Лавуазье представлял себе значение воды в строении Земли и в жизни природы. Падала резкая грань между мертвым гранитом и жидкой водой – этим нервом природы. Оценить это значение воды можно только в той безжизненной обстановке, которая царит там, где отсутствует вода. Да ведь и в жизни человека воду оценивают, подобно здоровью, лишь когда ощущают в ней недостаток…
Но на этом я не буду останавливаться сейчас; этим вопросам посвящены целые тома, и новые тома будут им посвящаться и впредь. Я хочу рассказать в этих строках, откуда взялась вода, каковы те законы, которые определяют ее существование, и каково ее будущее. Еще в туманных теориях древних поднимались эти вопросы о происхождении и судьбах воды, и сейчас поднимаются они, правда, в несколько измененном виде, в лабораториях ученых. В наследство от седой старины нашей науке досталось много загадок природы, и лишь несмелыми попытками подходит наука сейчас к их разрешению. Но в науке, как и в жизни, многие идеи долго остаются неизменными, и исторически сложившиеся взгляды нередко держатся лишь в силу привычки.
С пустыни началась древнейшая история осадков Земли.
«…Океан еще не владел Землей или успел сделать в ней лишь небольшие местные завоевания. Суша, неравномерно нагретая, с многочисленными вулканами и горячими источниками, владела почти нераздельно поверхностью планеты. Это и была древнейшая в мире пустыня. Первобытные бури потрясали атмосферу Земли могучими страшными концертами. По временам разражавшиеся ливни выметали из диких скалистых горных долин в необозримые безжизненные и голые равнины разнообразные продукты дробления… Солнце льет свой жар в тех местах, где холодные верхи гор не сгущают паров в тучи. Море еще не родилось или только еще рождалось в наиболее глубоких впадинах юной планеты. Снизу, еще близко к поверхности, недавно заключенный в каменную оболочку отрывок солнечной массы – раскаленная магма Земли. Местами она льется по земле могучими потоками, доставляя свежий каменный материал для грядущих процессов разрушения, или выбрасывает из глубин новые массы паров – созидателей будущего моря».
Так рисовались в красивых обобщениях московского профессора А. П. Павлова (1910) условия отдаленного прошлого нашей планеты, предшествовавшей появлению воды на Земле. Тяжелая атмосфера паров и газов окружала еще раскаленную Землю, и при температурах выше 350 °C не могло еще существовать Мирового океана. Но медленно и постепенно остывал земной шар, охлаждалась атмосфера. Горячие струи воды стали собираться на раскаленной пустыне, осаждаясь из паров и вновь превращаясь в них. Так из охлажденной оболочки газов собралось первое море, и в него стали вливаться испарения застывающих магм и охлажденные облака паров из жерл вулканов. И с тех пор в молодой океан стала собираться «девственная», или ювенильная, вода, впервые на Земле рождающаяся вода. Эти воды питают многие минеральные источники, в которых больные ищут восстановления сил. Кто скажет, сколько этих вод родилось со времени архейской эры, и кто станет утверждать, что первобытная атмосфера Земли заключала в себе все воды нынешних океанов?
Постепенно стал расти и расстилаться океан. Сложные геологические явления изменили его состав, его очертания и его массу. Как результат всей прошлой истории Земли лежат перед нами необозримые пространства вод, и задача ученого – расшифровать их загадку.
Еще в 1715 году ученый Галлей поднял вопрос, почему море соленое; он пытался дать ответ, совершенно правильно стремясь найти его в прошлой судьбе воды. Ведь за долгую историю своего возникновения на поверхности Земли вода океанов успела произвести огромную химическую работу. Много раз совершала она свой постоянный круговорот на поверхности Земли, вымывая все то, что легко растворяется, сортируя по удельному весу, накапливая труднорастворимые, устойчивые соединения на дне своих бассейнов. Сложная жизнь организмов вновь извлекла часть этих соединений, не трогая других, и, таким образом, в течение всего геологического прошлого в массе поверхностных вод скопились колоссальные количества различных солей. Этот процесс обогащения солями продолжается и в настоящее время, и миллионы тонн растворимых веществ приносят с собой ежегодно реки. Американский ученый Кларк подсчитал, что каждый год реки вливают в моря 1735 миллионов тонн растворенных солей. Пользуясь этой цифрой, Джоли попытался определить тот период времени, в течение которого мог образоваться наблюдаемый ныне состав океанов. Так как общее количество хлористого натрия в морской воде равняется 33 тысячам биллионов тонн, а ежегодно приносится около 110 миллионов тонн этой соли, то нетрудно, разделив первое число на последнее, получить возраст океана.
С первого момента своего возникновения до настоящих дней вода земной поверхности стала принимать участие в двух круговоротах. С поверхности озер, морей и океанов она поднимается в виде паров, увлекая за собой брызги морских волн и заключенные в них соли. Более 360 тысяч кубических километров воды собирается таким образом ежегодно в тучи и облака, и ветер разносит их по земной поверхности, орошая землю, рассеивая частицы хлористых солей, столь необходимых для растительной жизни. Так совершался и совершается внешний круговорот воды, вызывая к жизни органический мир, обусловливая смену климата и плодородие почвы.
Но часть воды неизбежно уходит обратно в землю. Сложны пути, которые использует вода для этого, и до настоящего момента нет еще исчерпывающих исследований, которые вполне объяснили бы ход поглощения воды землей. Много различных теорий пытались объяснить эти явления, начиная с идей древнегреческих философов Платона и Аристотеля, считавших, что воды Земли уходят в глубины через сказочную пропасть Тартар, и кончая современными представлениями, основанными на законах молекулярной физики.
С первого момента своего появления на поверхности Земли вплоть до настоящих дней вода делала огромное дело. Странствуя сложными путями в глубинах Земли, поверхностные воды выполняли огромную химическую задачу: разрушали породы и минералы, растворяли соли, перекристаллизовывали осадки. Вся химическая жизнь земной поверхности протекала в среде водных растворов, и многообразны были пути, которыми вода изменяла не только лик Земли, но и ее состав. В парах атмосферы она удерживала тепловые лучи солнца и вместе с воздухом и угольной кислотой обусловливала сравнительно высокую среднюю температуру земной поверхности (16 °C). Неустанно собирала она энергию солнца и, скопляясь на вершинах гор, давала начало могучей разрушительной силе.
С первыми каплями воды на Земле сделалась возможной органическая жизнь, в сложной цепи эволюции развивалась эта жизнь в прошлом нашей планеты, и только вода обусловливала возможность появления и развития жизни.
В организмах вода составляет существеннейшую часть, накапливаясь в теле некоторых медуз в количествах до девяноста девяти процентов, а в теле человека – в среднем до пятидесяти девяти процентов.
Так представляется нам прошлое воды, и с ним тесно сплетаются и ее настоящее и ее будущее.
Глава VI
Камень на службе человека
Камни и человек
Всего живет на нашей Земле около 4 миллиардов людей. Из некогда дикого полузверя человек ныне превратился в победителя природы, который постепенно научился подчинять себе все силы природы и ими управлять.
И люди, создавая города, фабрики и заводы, строя дороги и прорывая туннели, совершают огромную работу; и камень, и вся мертвая природа в целом совершенно необходимы для их хозяйства.
Мы знаем, что крестьянин в старой России каждый год перепахивал свое поле простой сохой или плугом и поднимал землю. А сколько всего этим путем в год переворачивается земли? Если подсчитать, то получится такой куб, каждая сторона которого равна пятнадцати километрам, то есть около трех тысяч кубических километров. Мы поймем значение этих цифр, если вспомним, что все реки Земли ежегодно уносят в море в растворенном или взмученном состоянии всего только два‑три кубических километра различных веществ.
Сколько других веществ добывает человек ежегодно из Земли? Попробуем подсчитать хотя бы приблизительно:
Угля................ 3000 миллионов тонн
Железа............. 400–450 миллионов тонн
Алюминия, цветных
и редких металлов......... 35–40 миллионов тонн
Солей................ 100 миллионов тонн
Известняка и других каменных
строительных материалов...... 5000 миллионов тонн
Всего человек добывает около двух миллиардов тонн разных веществ.
Чтобы понять значение этих чисел, вспомним, что хороший товарный поезд с пятьюдесятью – шестьюдесятью вагонами везет в среднем около одной тысячи тонн. Значит, понадобится ежегодно около двадцати миллионов поездов, чтобы перевезти те громадные количества руд, металлов, камней, угля, соли, которые ежегодно извлекаются из глубин.
А если мы подсчитаем, сколько человечество вообще за свою историю извлекло камня из глубин, то получатся огромные цифры. Достаточно отметить, что одной нефти было добыто за последние пятьдесят лет такое количество, которое могло бы образовать озеро окружностью в сто километров, а глубиной в пять метров. Одна Англия за всю свою историю извлекла из своих глубин свыше сорока кубических километров разных минералов и пород. Одни дома Англии весят несколько миллиардов тонн. Только в одном Севастополе было добыто в подземных каменоломнях так много известняка, что сейчас в них устроены прекрасные сухие подвалы для сорока тысяч тонн вина и шампанского.
Человек истребил за свою историю более семидесяти миллиардов тонн угля, добыл пять с лишним миллиардов тонн железа, около ста пятидесяти миллионов тонн меди, свинца и цинка, и даже золота он извлек около ста тысяч тонн, а серебра – в десять раз больше, чем золота. Попытайтесь теперь подсчитать, сколько стоит вся эта огромная добыча, если принять во внимание стоимость тонны добываемого каменного угля; тонны выплавляемого из железных руд чугуна или стали; алюминия и цветных металлов, получаемых путем сложной переработки первичного сырья; стоимость одного грамма золота, платины, серебра, одного карата алмазов и прочее. Мы получим цифру в несколько триллионов золотых рублей. Если мы примем еще во внимание, что одних алмазов добыто было человечеством за всю его историю приблизительно на десять миллиардов рублей, то не будет ошибкой считать, что человечество за долгий срок своей работы извлекло из недр Земли богатство, ценность которого намного превышает один триллион рублей золотом, или одну тысячу миллиардов!
Но что же делается с камнем, добытым человеком?
Оказывается, камень, несмотря на всю свою твердость и прочность, не вечен в руках человека; он постепенно исчезает и распыляется по всему свету. Даже золото в золотых монетах и изделиях настолько истирается в руках человека, что ежегодно запасы этого металла во всех банках всего мира уменьшаются на восемьсот килограммов, то есть почти пятьдесят пудов превращаются в мельчайшую пыль. Уголь безвозвратно сжигается в печах и топках фабрик и заводов. Железо, несмотря на все старание сохранить его – покрасить или покрыть оловом или цинком, – покрывается ржавчиной, истирается, окисляется и исчезает из обихода человечества. Человек съедает соль или превращает ее в другие продукты химической промышленности. Камень мостовых и дорог превращается в тончайшую пыль, – все исчезает, и снова человеку надо добывать новые камни.
С каждым годом число добываемых из недр полезных ископаемых увеличивается. Производство некоторых металлов, таких как алюминий, хром, молибден, вольфрам, увеличилось за столетие почти в тысячу раз; добыча и обработка железа, угля, марганца, никеля, меди выросла в пятьдесят – шестьдесят – сто раз. Все новые и новые вещества природы втягиваются в круг деятельности человека. То, что вчера казалось ненужным и бесполезным, сейчас делается очень ценным. Самые распространенные в земной коре известняки и глины начинают входить в хозяйство, и чем больше и глубже изучает человек недра, камни и минералы, тем больше ценных свойств удается ему в них отыскать.
Только минералогия позволяет нам произвести эту работу, и только благодаря ей все больше и больше человек завладевает недрами Земли и подчиняет ископаемые богатства своей воле, заставляя даже кажущиеся бесполезными камни служить человечеству.
Месторождения полезных ископаемых истощаются с каждым годом. Ведь камень не растет вновь, как растение, и раз использованный камень больше не рождается на наших глазах. Подсчеты геологов и минералогов показывают, что угля на всей Земле хватит, при современной добыче, лет на семьдесят пять, железа – на шестьдесят. Человечество останется без природных богатств, если будет по‑прежнему расхищать природу. Надо охранять ее и ее богатства, надо уметь извлекать целиком металлы и соли, надо научиться из каждого камня извлекать возможно больше пользы и не распылять его бесцельно по поверхности Земли.
Мы, дети века железа и угля, входим в новый век – глины, известняка, энергии атома, солнца и ветра. Наше будущее – в легких металлах природы; в укрощенной человеком гигантской энергии атома, питающей мощные электростанции, двигающей океанские лайнеры, космические корабли и планетоходы; в ярком и теплом солнечном луче; наше будущее и в безбрежном просторе песчаных дюн южных пустынь и глинистых отложений нашего Севера.
История извести
Одним из распространеннейших минералов Земли, или, вернее, наружной части земной коры, является углекислая известь, кальцит или известковый шпат в минералогии. Это то соединение, которое образует горы известняков и мраморов, в огромном количестве входит в состав почв и мергелей, растворено в речных водах и морской воде. Из него человек строит свои дома, обжигает его для известки, смешивает его с другими веществами в цемент, выстилает им тротуары городов. Может быть, только с глиной мог бы поспорить известняк в его громадной службе человечеству. Около двух сотых кубического километра, весом в пятьдесят миллионов тонн, добывается ежегодно этого минерала, и около четырех миллионов вагонов – приблизительно восемьдесят тысяч большегрузных железнодорожных составов – ежегодно заняты перевозкой известняка – важнейшего продукта горной деятельности человека.
История известняка, однако, оказывается очень сложной и длинной. Многие ученые занимались ее разгадкой, но это еще далеко не выяснено полностью.
Каждый год реки несут в моря и океаны в виде мельчайших частиц или мути громадные количества углекислого кальция; подсчитано, что каждые пятнадцать тысяч лет реки приносят столько этого вещества, сколько сейчас имеется во всех морях и океанах. Так куда же исчезает углекислый кальций морей?
Сейчас мы довольно хорошо знаем, что его поглощают и отлагают животные, населяющие моря, превращая в свои скелеты и панцири. Крохотные кораллы в тропических морях создают гигантские постройки, ежегодно поднимая их в среднем на один сантиметр, выращивая в сотни тысяч лет громадные рифы и острова.
Но не только кораллы извлекают углекислый кальций для построения своего жизненного остова; крохотные животные – корненожки, видимые только при больших увеличениях в микроскоп, – производят не меньшую работу. На миллионах квадратных километров дна больших океанов они накапливают мощные слои белых мелкозернистых осадков: мела или известняка. Эти крошечные строители жизни – самые мощные деятели в природе. Громадные здания Москвы, дома Парижа или Вены, острые пики Альп, высоты Крымских гор, живописные Жигули на Волге или самые высокие вершины величайшей горы Эвереста – все это в своей основе построено микроскопическими животными.
Так рисуется нам первая страница в истории извести: медленно падают на дно морей и океанов скелеты, раковины, панцири морских животных. На дне образуется илистая масса этих бесформенных частичек, смешанная с остатками жизнедеятельности и продуктами гниения отмерших организмов. И здесь, в глубинах, постепенно, путем особых химических и физических процессов, которые мы называем диагенезом, из этой полужидкой массы образуется горная порода, – и слой за слоем растут здесь, на дне, отложения известняков, мергелей и других известковых пород.
Вторая страница в истории извести закончена – возникла известковая горная порода. Начинается третья: глубины морей медленно поднимаются на поверхность, воды отходят, и на месте морей и океанов вырастают мощные горные цепи; подводные слои известняков образуют вершины горных хребтов; обламываются, изгибаются и вздымаются одни слои, опускаются другие… Могучие силы земли рождают во всей красоте Крым или Кавказскую Ривьеру.
Но к этой третьей странице в истории извести очень скоро присоединяется и следующая: дождь и мороз, ключи и ручьи начинают свою работу. Растворяя углекислую известь, они вызывают к жизни изумительные явления в громадных масштабах.
Вот бурная река прорезает горные хребты известняков, прорывая узкое ущелье со стенками в несколько сот метров высоты. По узкому карнизу над бурной рекой вьется тропа, перебрасываясь с берега на берег и на каждом шагу готовя опасность путнику или каравану.