Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теорема сложения если 2 события не совместимы

Следствие 2. Если события А и В несовместны, то тАВ = 0, и, следовательно, вероятность суммы несовместных событий равна сумме их вероятностей: Р (А + В) = р (А) + р (В).    

Противоположными событиями называют два несовместных события, образующих полную группу. Если одно из них назвать А, то второе принято обозначать .

Замечание. Таким образом,  заключается в том, что событие А не произошло.

 

 

 

Теорема умножения вероятностей. Теорема умножения для независимых событий. Вероятность появления хотя бы одного события.

Назовем условной вероятностью р (В/А) события В вероятность события В при условии, что событие А произошло.

Замечание. Понятие условной вероятности используется в основном в случаях, когда осуществление события А изменяет вероятность события В.

(теорема умножения). Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

р (АВ) = р (А) · р (В/А). (2.6)

Доказательство.

Воспользуемся обозначениями теоремы 2.1. Тогда для вычисления р (В/А) множеством возможных исходов нужно считать тА (так как А произошло), а множеством благоприятных исходов – те, при которых произошли и А, и В (тАВ). Следовательно,

 

 откуда следует утверждение теоремы.

Следствие.  Если подобным образом вычислить вероятность события ВА, совпадающего с событием АВ, то получим, что р (ВА) = р (В) · р (А/В). Следовательно,

р (А) · р (В/А) = р (В) · р (А/В).              (2.7)

Событие В называется независимым от события А, если появление события А не изменяет вероятности В, то есть р (В/А) = р (В).

Замечание. Если событие В не зависит от А, то и А не зависит от В. Действительно, из (2.7) следует при этом, что р (А) · р (В) = р (В) · р (А/В), откуда р (А/В) = р (А). Значит, свойство независимости событий взаимно.

Теорема умножения для независимых событий имеет вид:

р (АВ) = р (А) · р (В),                                                                       

то есть вероятность произведения независимых событий равна произведению их вероят-ностей.

При решении задач теоремы сложения и умножения обычно применяются вместе.

  Вероятность появления хотя бы одного события.

Теорема. Вероятность появления хотя бы одного из попарно независимых событий

А 1, А 2,…, Ап равна        р (А) = 1 – q 1 q 2qn,    (2.9)

где qi вероятность события , противоположного событию А i.

Доказательство.

Если событие А заключается в появлении хотя бы одного события из А 1, А 2,…, Ап, то события А и  противоположны, поэтому по теореме 2.2 сумма их вероятностей равна 1. Кроме того, поскольку А 1, А 2,…, Ап  независимы, то независимы и , следовательно, р () = . Отсюда следует справедливость формулы (2.9).

 



<== предыдущая лекция | следующая лекция ==>
Геометрическая вероятность | Дискретные случайные величины.
Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 146 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.