Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Инструкция по работе с методическим указанием.

МАТЕМАТИКА

Часть первая

 

Методические указания по изучению дисциплины и выполнению контрольных работ для студентов-заочников первого курса МИППС специальностей 15.03.02, 21.03.01

Краснодар

 

2009

 


Составители:ст. преподаватель В.Н. Лисянская;

к.ф.-м.н., доцент, И.В. Терещенко

 

 

УДК 517

 

Математика. Часть первая. Методические указания по изучению дисциплины и выполнению контрольных работ для студентов-заочников первого курса МИППС специальностей 15.03.02, 21.03.01 / Сост.:          В.Н. Лисянская, И.В. Терещенко; Кубан. гос. технол. ун-т. Каф. Общей математики. – Краснодар: 2009. – 31 с.

 

 

В методических указаниях изложены программа дисциплины, варианты контрольных заданий, темы практических занятий, вопросы к зачету (или экзамену), рекомендуемая литература, приведены примеры выполнения и требования к оформлению контрольных работ.

 

Ил. 2 Библиогр.: 6 назв.

 

 

Печатается по решению методического совета Кубанского государственного технологического университета.

 

 

Рецензенты: канд. тен. наук Силинская С.М.

                 канд. тех. наук Нестеров С.В.

 

Содержание

 

 

Введение …………………..………………………………………… 4
1. Инструкция по работе с методическим указанием ………….… 5
2. Программа дисциплины ……………………………………..…... 5
3. Контрольные работы ……..……………….…………….………. 7
4. Темы практических занятий …………………………………...... 28
5. Содержание и оформление контрольных работ ………………. 29
6. Вопросы для подготовки к экзамену (зачету) …………….……. 29
7. Задания на контрольную работу №1…….………..…………….. 31
Список рекомендуемой литературы …………………………..…... 37

 

 

Введение

Инженер должен в области математики иметь представление:

- о математике как особом способе познания мира, общности ее понятий и представлений;

- о математическом моделировании;

- об информации, методах ее хранения, разработки и передачи.

Знать и уметь использовать:

- основные понятия и методы математического анализа, аналитической геометрии, линейной алгебры, теории функций комплексного переменного, теории вероятностей и математической статистики, дискретной математики;

- математические модели простейших систем и процессов в естествознании и технике;

- вероятностные модели для конкретных процессов и проводить расчеты в рамках построенной модели.

Иметь опыт:

- употребления математической символики для выражения количественных и качественных отношений объектов;

- исследования моделей с учетом их иерархической структуры и оценки пределов применимости полученных результатов:

- использования основных приемов обработки экспериментальных данных;

- аналитического и численного решения алгебраических уравнений;

- исследования, аналитического и численного решения обыкновенных дифференциальных уравнений;

- аналитического и численного решения основных уравнений математической физики;

- программирования и использования возможностей вычислительной техники и программного обеспечения;

Цель курса «Математика»:

- дать студентам необходимую математическую подготовку для изучения общенаучных, общеинженерных и специальных дисциплин;

- привить студентам навыки логического и алгоритмического мышления;

- овладеть методами исследования и решения математических и прикладных задач по специальности;

- выработать умения самостоятельно расширять математические знания и применять их при анализе инженерных задач.

 

Инструкция по работе с методическим указанием.

В разделе «Программа дисциплины» приведены темы и указывается, что необходимо знать в пределах каждой темы. В конце тем приводятся вопросы для самопроверки и литература из списка рекомендуемой литературы с указанием глав, страниц, где излагается материал темы.

Пример.

Литература: [2, гл.2 c. 3-9], [4, c. 143-162],

где 2 и 4 – порядковые номера литературных источников из списка рекомендуемой литературы.

Вариант контрольного задания выбирается по последней цифре шифра зачётной книжки. Последняя цифра шифра (0) соответствует 10 варианту в контрольном задании.

В разделе «Темы практических занятий» приводятся наименования практических занятий, которые будут проводиться в период экзаменационной сессии, и указывается литература для подготовки.

 

Программа дисциплины.

 

Тема 1. Элементы линейной и векторной алгебры.

Определители второго и третьего порядков, их свойства, вычисление. Решение систем линейных уравнений по формулам Крамера. Понятие вектора. Скалярное произведение векторов и его свойства. Выражение скалярного произведения через координаты. Некоторые приложения. Векторное произведение векторов и его свойства. Выражение векторного произведения через координаты. Некоторые приложения. Смешанное произведение векторов и его свойства и геометрический смысл. Выражение смешанного произведения через координаты. Некоторые приложения.

Литература: [3, c. 123 – 129, 153 – 165], [4, c. 259 – 268, 223 – 239 ],

Вопросы для самоконтроля.

1. Вычисление определителя третьего порядка.

2. Решение систем линейных уравнений по правилу Крамера.

3. Определение скалярного произведения векторов.

4. Понятие векторного произведения векторов, его приложения.

5. Смешанное произведение векторов, его приложения.

 

Тема 2 .Элементы аналитической геометрии.

Прямая на плоскости. Различные формы уравнения прямой на плоскости. Плоскость в пространстве. Прямая в пространстве. Взаимное расположение прямой и плоскости.

Литература: [2, с. 15-23], [4, гл.3 c. 43-49, гл.9 с.244-252].

Вопросы для самоконтроля.

1. Уравнения прямой на плоскости.

2. Взаимное расположение прямых на плоскости.

3. Плоскость в пространстве. Уравнение плоскости, проходящей через три точки, уравнение плоскости по точке и нормали.

4. Угол между плоскостями.

5. Уравнения прямой в пространстве.

 

Тема 3. Введение в математический анализ.

Понятие функции. Предел функции. Односторонние пределы. Предел функции при . Бесконечно малые и бесконечно большие функции, связь между ними. Основные теоремы о пределах. Первый и второй замечательный пределы. Непрерывность функции. Свойства функций, непрерывных на отрезке. Точки разрыва и их классификация.

Литература: [1, гл.2 §2-11], [4, гл.4 §2-9].

Вопросы для самоконтроля.

1. Что называется пределом функции.

2. Бесконечно малые и бесконечно большие функции.

3. Раскрытие неопределенностей 0/0 и ∞/∞.

4. Первый и второй замечательный пределы, их следствия.

5. Дать определение непрерывности функции.

6. Точки разрыва и их классификация.

 

Тема 4. Дифференциальное исчисление функции одной переменной.

Производная функции, ее геометрический смысл. Основные правила и формулы дифференцирования. Производная сложной, обратной функции. Производные высших порядков. Некоторые теоремы о дифференцируемых функциях. Приложения производной. Правило Лопиталя. Условия монотонности функций. Необходимое и достаточное условия экстремума. Выпуклость и вогнутость, точки перегиба графика функции. Асимптоты. Общая схема исследования функции.

Литература:[1, гл.3 §2-16, гл.5 §2-11], [4, гл.5 §1-7, гл.6 §2,4], [2, гл.7 §1,2].

Вопросы для самоконтроля.

1. Дать определение производной функции, ее геометрический и физический смысл.

2. Сформулировать основные правила дифференцирования.

3. Основные приложения производной.

4. Как определить промежутки монотонности и экстремумы функции.

5. Нахождение асимптот графика функции.

6. Сформулировать необходимое и достаточное условия экстремума.

7. Определение выпуклости и вогнутости, точек перегиба графика функции.

Тема 5 .Интегральное исчисление.

Неопределенный интеграл. Определенный интеграл. Приближенное значение определенного интеграла. Приложения определенного интеграла. Несобственные интегралы.

Литература: [4, гл7,8 с. 159-221].

Вопросы для самоконтроля.

1. Вычисление неопределенных интегралов.

2. Определенный интеграл и его приложения.

3. Вычисление несобственных интегралов первого и второго рода.

4. Вычисление приближенного значения интеграла  с помощью формулы Симпсона.

Контрольные работы.

Программой дисциплины «Математика» для студентов I курса в первом семестре предусмотрено выполнение контрольных работ №1.

При выполнении контрольной работы №1 необходимо изучить элементы линейной и векторной алгебры, аналитической геометрии на плоскости и в пространстве. Изучить теорию пределов. Научиться вычислять основные типы пределов ‑ неопределенности , первый и второй замечательный пределы. Изучить понятие непрерывности функции, точки разрыва и их классификацию. Изучить основы дифференциального исчисления функции одной и нескольких переменных, а также их приложения к исследованию функции одной и нескольких переменных. Изучить понятие неопределенного и определенного интеграла.



<== предыдущая лекция | следующая лекция ==>
Тема 8. Рынки факторов производства и распределение доходов | Линейная и векторная алгебра.
Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 137 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2477 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.