Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Виды письменной нумерации. Системы счисления 2 страница




 


 

На схеме представлены связь и взаимообусловленность прин­ципов. В учебном процессе вся система дидактических прин­ципов реализуется одновременно, широким фронтом. При этом следует помнить, что основным, главным является принцип развивающего и воспитывающего обучения. Орга­низация обучения в соответствии с этими принципами обес­печивает осознанное овладение детьми элементами матема­тических знаний и умений, развитие у них познавательных сил и возможностей.

Упражнения для самопроверки

Формирование начальных... представ­лений у детей всех... групп детского сада осуществляется на общедидактических....

Сами дидактические принципы пред­ставляют собой определенную.... Основ­ным принципом обучения является прин­цип... и воспитывающего обучения.

Результат обучения детей... зависит от построения учебного процесса в соответ­ствии с основными... принципами. (Математических, возрастных,принципах, систему, развивающего,,математике, дидактическими)

 

66


§ 2. Содержание математического развития дошкольников

Математическое развитие детей дошкольного возраста осу­ществляется как в результате приобретения ребенком зна­ний в повседневной жизни (прежде всего в результате обще­ния со взрослым), так и путем целенаправленного обучения на занятиях по формированию элементарных математичес­ких знаний. Именно элементарные математические знания и умения детей следует рассматривать как главное средство математического развития.

Г.С.Костюк доказал, что в процессе обучения у детей развивается способность точнее и полнее воспринимать ок­ружающий мир, выделять признаки предметов и явлений, раскрывать их связи, замечать свойства, интерпретировать наблюдаемое; формируются мыслительные действия, при­емы умственной деятельности, создаются внутренние усло­вия для перехода к новым формам памяти, мышления и воображения.

Психологические экспериментальные исследования и пе­дагогический опыт свидетельствуют о том, что благодаря систематическому обучению дошкольников математике у них формируются сенсорные, перцептивные, мыслительные, вербальные, мнемические и другие компоненты общих и специальных способностей. В исследованиях В.В.Давыдова, Л.В.Занкова и других доказано, что задатки индивида пре­вращаются в конкретные способности посредством учения. Разница в уровнях развития детей, как показывает опыт, выражается главным образом в том, какими темпами и с какими успехами они овладевают знаниями.

Однако при всем важном значении обучения в психичес­ком развитии личности последнее нельзя сводить к учению. Развитие не исчерпывается теми изменениями личности, которые являются прямым следствием обучения (Г.С.Кос­тюк). Оно характеризуется теми «умственными поворотами», которые происходят в голове ребенка, когда он научается искусству говорить, читать, считать, усваивает социальный опыт, передаваемый ему взрослым (И.И.Сеченов).

Как показывают исследования (А.В.Запорожец, Д.Б.Эль-конин, В.В.Давыдов и др.), развитие идет далее того, что усваивается в тот или иной момент обучения. В процессе обу­чения и под влиянием обучения происходит целостное, про­грессирующее изменение личности, ее взглядов, чувств, спо­собностей. Благодаря обучению расширяются возможности

67


дальнейшего усвоения нового, более сложного материала, создаются новые резервы обучения.

Между обучением и развитием существует взаимная связь. Обучение активно содействует развитию ребенка, но и само значительно опирается на его уровень развития. В этом про­цессе многое зависит от того, насколько обучение нацелено на развитие.

Обучение может по-разному развивать ребенка в зависи­мости от его содержания и методов. Именно содержание и его структура являются гарантами математического развития ребенка.

В методике вопрос «чему учить?» всегда был и остается одним из основных вопросов. Давать ли детям основы науч­ных знаний, вооружать ли их только набором конкретных умений, при помощи которых они имели бы некоторую прак­тическую ориентировку, — это важная проблема дидактики детского сада.

Содержание математического развития отражено в Про­грамме обучения детей математике, и условно можно его разделить на три направления: представления и понятия; за­висимости и отношения; математические действия.

Отобрать познавательный материал для изучения с уче­том его значимости и в соответствии с возможностями де­тей — дело весьма непростое. Содержание обучения, т.е. про­грамма по формированию элементов математики, отрабаты­валось на протяжении многих лет, В последние 50 лет этот процесс осуществлялся на базе экспериментальных исследо­ваний (А.МЛеушина, В.В.Даншгова, Т.В.Тарунтаева, РЛ.Бе-резина, Г.А.Корнеева, Н.И.Непомнящаяидр.).

Под содержанием обучения понимаются объем и характер знаний, умений и навыков, которыми должны овладеть дети в процессе организации разных видов дея­тельности.

Анализ различных (вариативных) программ по математи­ке в детском саду позволяет заключить, что основным в их содержании является достаточно разнообразный круг пред­ставлений и понятий: количество, число, множество, под­множество, величина, мера, форма предмета и геометричес­кие фигуры; представления и понятия о пространстве (на­правление, расстояние, взаимное расположение предметов в пространстве) и времени (единицы измерения времени, не­которые его особенности).

При этом важно подчеркнуть, что каждое математичес­кое понятие формируется постепенно, поэтапно, по линей-

68


но-концентрическому принципу. Разные математические по­нятия тесно связаны между собой. Так, в работе с детьми четвертого года жизни основное внимание уделяется форми­рованию знаний о множестве. Дети учатся сравнивать «кон­трастные» и «смежные» множества (много и один; больше (меньше) на один). В дальнейшем, в группах пятого, шесто­го, седьмого годов жизни, знания о множестве углубляют­ся: дети сравнивают множество элементов по количеству со­ставляющих, делят множество на подмножества, устанавли­вая зависимости между целым и его частями, и т.п.

На основе представлений о множестве у детей формиру­ются представления и понятия о числах и величинах и т.д. Усваивая понятия о числах, ребенок учится абстрагировать количественные отношения от всех других особенностей эле­ментов множества (величина, цвет, форма). Это требует от ребенка умения выделять отдельные свойства предметов, срав­нивать, обобщать, делать выводы.

Формирование понятий о величине тесно связано с раз­витием у детей числовых представлений. Сформированность оценок величины, знаний о числе позитивно влияет на фор­мирование знаний о форме предметов (у квадрата 4 сторо­ны, все стороны равны, а у прямоугольника — только про­тивоположные и т.д.).

В дошкольном возрасте основные математические поня­тия вводятся описательно. Так, при ознакомлении с числом дети упражняются в счете конкретных предметов, реальных и нарисованных (считают девочек и мальчиков, зайчиков и лисичек, круги и квадраты), попутно знакомятся с про­стейшими геометрическими фигурами, без всяких определе­ний и даже описаний этих понятий. Точно так же дети усва­ивают понятия: больше, меньше; один, два, три; первый, вто­ рой, последний и т.д.

Каждое понятие вводится наглядно, путем созерцания конкретных предметов или практического оперирования ими.

В период дошкольного детства, как отмечают Н.Н.Поддья-ков, А.А.Столяр и другие, имеется достаточно обширная об­ласть «предпонятийных», «житейских» понятий. Содержание «житейских» понятий очень расплывчато, диффузно, оно ох­ватывает самые различные формы, предшествующие настоя­щим понятиям. Тем не менее «житейские понятия» важны для математического развития ребенка.

Специфическая особенность «житейских понятий» тако­ва, что они построены на основе обобщения признаков пред­метов, существенных с точки зрения каких-либо нужд че-

69


ловека, выполнения им различных видов практической дея­тельности.

Интересные данные в этом плане были получены З.М.Бо­гуславской (1955), изучавшей особенности формирования обобщений у детей различных дошкольных возрастов в про­цессе дидактической игры. У младших дошкольников позна­вательная деятельность была подчинена решению той или иной конкретной игровой задаче и обслуживала ее. Дети ус­ваивали лишь те сообщаемые им сведения, которые были необходимы для достижения определенного практического эффекта в игре. Усвоение знаний носило утилитарный ха­рактер. Приобретаемые знания тут же применялись для вы­полнения заданной группировки картинок.

У старших дошкольников познавательная деятельность в процессе дидактических игр выходила за рамки лишь не­посредственного обслуживания практических задач, теряя сугубо эмпирический характер, и выступала уже в форме развернутой содержательной деятельности с характерными специфическими способами осуществления. В результате фор­мируемые у детей представления и понятия достаточно полно и адекватно отражали определенный круг явлений.

Другим направлением в обучении дошкольников матема­тике является ознакомление их с рядом математических за­висимостей и отношений. Например, дети осознают некото­рые отношения между предметными множествами (равно-численность — неравночисленность), отношение порядка в натуральном ряду, временные отношения; зависимости меж­ду свойствами геометрических фигур, между величиной, ме­рой и результатом измерения и др.

Особо следует выделить требования к формированию у детей определенных математических действий: накладыва­ние, прикладывание, пересчитывание, отсчитывание, изме­рение и т.д. Именно овладение действиями оказывает наи­большее влияние на развитие.

В методике выделяются две группы математических дей­ствий:

основные: счет, измерение, вычисления;

дополнительные: пропедевтические, сконструиро­ванные в дидактических целях; практическое сравнение, на­ложение, приложение (А.М.Леушина); уравнивание и комп­лектование; сопоставление (В.ВДавыдов, Н.И.Непомнящая).

Как видим, содержание «предматематической» подготовки в детском саду имеет свои особенности. Они объясняются: спецификой математических понятий;

70


традициями в обучении дошкольников; требованиями современной школы к ма­тематическому развитию детей (А.А.Столяр).

Учебный материал запрограммирован так, чтобы на ос­нове уже усвоенных более простых знаний и способов дея­тельности у детей формировались новые, которые в свою очередь будут выступать предпосылкой становления слож­ных знаний и умений, и т.д.

В процессе обучения наряду с формированием у детей прак­тических действий формируются также познавательные (ум­ственные) действия, которыми без помощи взрослых ребе­нок овладеть не может. Именно умственным действиям при­надлежит ведущая роль, так как объектом познания в математике являются скрытые количественные отношения, алгоритмы, взаимосвязи.

Весь процесс формирования элементов математики не­посредственно связан с усвоением специальной терминоло­гии. Слово делает понятие осмысленным, подводит к обоб­щениям, к абстрагированию.

Особое место в реализации содержания обучения (про­граммных задач) занимает планирование учебно-воспитатель­ной работы на занятиях и вне их в форме перспективного и календарного плана. Значительную помощь в работе воспи­тателя могут оказать ориентировочные перспективные пла­ны; планы-конспекты занятий по математике. Эти планы и конспекты воспитатель должен использовать именно как ориентировочные, при этом следует постоянно сопоставлять их содержание с уровнем математического развития детей данной группы.

План-конспект занятий по математике включает следую­щие структурные компоненты: тема занятия; программные задачи (цели); активизация словаря детей; дидактический материал; ход занятия (методические приемы, использова­ние их в разных частях занятия), итог.

Воспитатель проводит занятия в соответствии с планом. Каждое занятие независимо от его длительности и формы проведения — это организационно, логически и психоло­гически завершенное целое. Организационная целостность и завершенность занятия заключаются в том, что оно на­чинается и заканчивается в четко отведенное для этого время.

Логическая целостность заключается в содержании за­нятия, в логических переходах от одной части занятия к другой.

71


Психологическая целостность характеризуется достижени­ем цели, чувством удовлетворения, желанием продолжать ра­боту дальше.

Упражнения для самопроверки

математике интеллектуальное

В процессе обучения детей... осуще­ствляется их..., в частности математи­ческое, развитие.

математических познавательные

математического средство

базу

математике

развития государственный

В дошкольный период дети овладевают достаточно большим объемом... понятий, приобретают практические и... умения.

Содержание обучения рассматривает­ся в методике... развития детей прежде всего как..., ведущее к накоплению зна­ний, умений и к тем внутренним измене­ниям, которые составляют..., основу раз­вития. В выборе конкретного содержания обучения... воспитатель должен ориенти­роваться на Программу... и воспитание де­тей, отражающую... стандарт знаний дош­кольников и действительный уровень их в данной группе.

§ 3. Формы организации обучения детей элементам математики

Одним из существенных компонентов процесса обучения являются формы его организации. В дидактике «форма» (уст­ройство, строй, система организации, внутренняя структу­ра) рассматривается как способ построения учебной дея­тельности. Организационные формы обучения должны на­дежно обеспечивать осуществление задач учебного процесса, конечная цель которого — содействие всестороннему и в первую очередь интеллектуальному развитию детей.

Разнообразие форм обучения определяется количеством обучающихся, местом и временем проведения занятий, спо­собами деятельности детей, а также способами руководства этой деятельностью со стороны педагога. Исходя из особен­ностей организации обучения, определяемой количеством обучающихся, различают индивидуальную, коллективную и групповую (дифференцированную) формы обучения.

Самая древняя форма организации обучения — инди­видуальное обучение. Эта форма в воспитании

72


детей дошкольного возраста использовалась и используется во все времена в семейном воспитании. Впоследствии в свя­зи с организацией общественного дошкольного воспитания она также используется, но все более в сочетании с коллек­тивной. Индивидуальная форма обучения заключается в том, что ребенок приобретает знания, выполняет различные за­дания, имея возможность получения при этом непосредствен­ной или косвенной помощи со стороны взрослого. Особое место индивидуальная форма обучения приобрела в системе М.Монтессори. Распространена была и в системе обществен­ного дошкольного воспитания СССР, особенно в 20—30-е годы (системы Е.И.Тихеевой, Ф.Н.Блехер и др.). Однако объективные условия (главным образом экономические) на первый план выдвигают коллективные и групповые занятия с детьми.

У индивидуальной формы обучения есть как положитель­ные, так и отрицательные моменты. Положительным следует считать тот факт, что индивидуальное обучение обеспечива­ет накопление личного опыта, развитие самостоятельности и активности ребенка, переживание положительных эмоций от общения непосредственно с педагогом (или с тем взрос­лым, который организует этот процесс). Оно, как правило, более результативно, нежели коллективное обучение. Имен­но при индивидуальном обучении сотрудничество ребенка со взрослым позволяет достигать цели. Это связано с тем, что, обучая одного ребенка, взрослый легко может увидеть (определить) его «зону ближайшего развития». А затем это новое образование входит в фонд его «актуального разви­тия» (Л.С.Выготский). Следует отметить, что индивидуаль­ное обучение весьма экономически невыгодно. Даже если обучение организуется не с одним, а с двумя-тремя детьми одного уровня развития, К тому же в индивидуальном обу­чении недостаточно реализуются возможности сотрудниче­ства и соперничества со сверстниками, которые являются важным эмоциональным фоном учения.

Возможно, именно поэтому в альтернативу индивиду­альной возникла другая форма обучения — коллектив­на я, естественно, более экономически выгодная. При кол­лективной форме обучения один педагог работает одновре­менно с целой группой. Здесь налицо взаимная помощь и взаимное обучение. Но значительным недостатком коллек­тивной формы обучения является то, что недостаточно учи­тываются так называемые индивидуальные различия. У раз­ных детей, естественно, разный темп работы, разный уро-

73


вень способностей, разное отношение к деятельности и т.п. Если педагог не учитывает этого, пытается выравнять всех, подтягивая до среднего уровня одних и сдерживая, замедляя развитие других, наиболее способных, одаренных детей, то проигрывают в таком случае и первые, и вторые. Следует отметить, к сожалению, что коллективная форма обучения в детском саду с начала 50-х годов и до настоящего времени занимает ведущее место, в форме занятий со всей группой детей. Традиционно обучение детей осуществляется по еди­ным программам и единым учебным пособиям. Дети внутри одного возраста имеют значительные индивидуальные раз­личия, поэтому организация обучения должна строиться с учетом этих различий.

Когда в настоящее время обсуждается проблема перестрой­ки дошкольного воспитания, то прежде всего речь идет об обновлении форм организации обучения и воспитания де­тей, о рациональном сочетании индивидуального и коллек­тивного обучения.

Учебно-воспитательный процесс, для которого характе­рен учет типичных и индивидуальных различий уровней раз­вития детей, принято называть дифференцирован­ным. В педагогической практике такое обучение называют «групповым», «индивидуально-групповым» или «коллектив­но-групповым» обучением.

Дифференциация обучения осуществляется по следующим критериям: по способностям или не способностям к обуче­нию, по интересам, по объему материала и степени его слож­ности, по степени самостоятельности и темпу продвижения в обучении.

Проблема дифференцированного обучения в нашей стране остро встала под влиянием решения важных вопросов разви­вающего обучения (Л.С.Выготский, Л.В.Занков, Ю.К.Бабан-ский и др.). В школьной дидактике обоснованы некоторые прин­ципы развивающего обучения: обучение на высоком уровне трудности; продвижение в обучении быстрым темпом; обес­печение ведущей роли теории и др.

Проблема индивидуализации и дифференциации в обуче­нии и воспитании детей дошкольного возраста исследова­лась прежде всего под углом зрения развития способностей детей. Так, система индивидуального подхода в работах Л.П.Князевой, Г.МДикопольской, Я.И.Ковальчук и других включает главным образом варьирование заданий, вопро­сов, указаний, установок с учетом отдельных качеств лич­ности ребенка.

74


Если в массовой педагогической практике редко, то в эк­спериментальных исследованиях проблем обучения в основ­ном всегда организуется дифференцированная работа с под­группами детей, обладающих одинаковым уровнем возмож­ностей, способностей. На основе оптимальной диагностики определяются уровни обучаемости, разрабатываются специ­фичные программы, соответствующие уровню развития де­тей, что и позволяет авторам достигать более высоких ре­зультатов обучения.

В исследовании Т.М.Степановой (Одесса, 1995) доказано преимущество рационального сочетания разных форм орга­низации обучения детей математике. Автором разработаны разноуровневая программа по математике и модель учебного процесса по формированию элементарных математических представлений (табл. 1).

Деление на подгруппы (дифференцированное обучение) позволяет регулировать объем и сложность изучаемого мате­риала, корректировать количество занятий в неделю (месяц). Подгруппа детей с более низким уровнем возможностей (низ­кий уровень развития внимания, мышления, памяти, вооб­ражения) занимается 2—3 раза в неделю, но занятия не­сколько короче и количество программных познавательных задач меньше.

Как видим, большая часть занятий организуется со всей группой детей, однако итоговые занятия предполагают диф­ференцированную (с подгруппами) форму организации.

В современной практике дошкольных учреждений наблю­даются две тенденции в организации обучения. Часть педа­гогов предлагает совершенно отказаться от коллективных за­нятий по математике, заменив их играми, индивидуальны­ми беседами и другими формами работы. Причем иногда наблюдается вообще спонтанное, исходя из интересов и по­требностей детей, решение дидактических задач. При таком подходе программные требования реализуются в оснозном в небольших подгруппах при самостоятельной деятельности де­тей. Такой подход к организации учебного процесса может иметь положительный результат только у грамотного, твор­ческого педагога. Другая часть педагогов отдает предпочте­ние коллективной форме как одной из ведущих форм учеб­ной деятельности детей.

При этом индивидуальное и дифференцированное обуче­ние используется как дополнение к основной — коллектив­ной. Они могут осуществляться в различных повседневных учебных ситуациях, т.е. в процессе организации разных ре-

75


Таблица 1

Модель учебного процесса по формированию

элементарных математических представлений

у старших дошкольников

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сентябрь

Октябрь

Ноябрь

Итоговые занятия
I II III IV I II III IV I И III IV
 

 

 

 

 

 

 

 

 

 

 

 

   

Декабрь

Январь

Февраль

Итоговые занятия
I II III IV I II III IV I II III IV
 

 

 

 

 

 

 

 

 

 

 

 

       

Март

Апрель

Май

Итоговые занятия
I И III IV I II III IV I II III IV
 

 

 

 

 

 

 

 

 

 

 

 

       

— коллективное I — дифференцированное обу- г
обучение              ' '  чение по разноуровневым  ■

программам (см. Приложе­ние)


жимных моментов: во время приема детей утром, в процессе одевания, раздевания, умывания, а также при руководстве деятельностью дежурных, игр и др. Так, воспитатель предла­гает ребенку (нескольким детям) обратить внимание на знач­ки (геометрические фигуры) на шкафчиках для детской одеж­ды, на обувь (правый — левый ботинок), на размещение одежды в шкафчике (на верхней полочке лежит шапка, вни­зу стоят ботинки) и т.д.

На каждом коллективном занятии имеет место работа с отдельными детьми. Это может быть как временное сниже­ние требований, активная непосредственная помощь со сто­роны воспитателя детям, которые в ней нуждаются. Или, наоборот, предложение некоторым детям сложных, проблем­ных заданий, с учетом их возможностей и интересов.

В последнее десятилетие вопросы развивающего обучения рассматриваются в тесной связи с интеграцией программ­ных задач, интеграцией разных видов деятельности детей. Особенно это характерно для обучения дошкольников мате­матике. Для детей младшего и среднего дошкольного возрас­та более естественно приобретение знаний, умений в игро­вой, конструктивной, двигательной, изобразительной дея­тельности. Поэтому рекомендуется один-два раза в месяц проводить интегрированные занятия: математика и рисова­ние; математика и физкультура; конструирование и матема­тика; аппликация и математика и т.д. При этом следует раз­личать, когда на занятиях по математике используется как фрагмент (часть занятия) рисование или конструирование, а когда, наоборот, на занятии по аппликации, физической культуре вначале или в конце занятия решаются отдельные задачи по математике.

Экспериментальные исследования и педагогическая прак­тика обучения дошкольников элементам математики убежда­ют в преимуществе такой организации учебного процесса, при которой органично сочетаются различные формы обучения.

Упражнения для самопроверки

Основными организационными... обу-            формами

чения являются: индивидуальная,..., диф-    коллективная ференцированная (групповая).

Выбор и сочетание... организации учеб-             форм

ной деятельности определяются психо­
лого-педагогическими условиями учебно­
го процесса: особенностями... группы,   структуры


 


76


77


характера... материала, адекватностью   учебного

формируемого способа действия, а так­
же местом занятия в... процессе.                               учебном

Наиболее целесообразно сочетание
различных... обучения.                                                   форм

§ 4. Роль дидактических средств в математическом развитии детей

В теории обучения (дидактике) особое место отводится средствам обучения и влиянию их на результат этого про­цесса.

Под средствами обучения понимаются: со­вокупности предметов, явлений (В.Е.Гмурман, Ф.Ф.Коро­лев), знаки (модели), действия (П.Р.Атутов, И.С.Якиман­ская), а также слово (Г.С.Косюк, А.Р.Лурия, М.Н.Скаткин и др.), участвующие непосредственно в учебно-воспитатель­ном процессе и обеспечивающие усвоение новых знаний и развитие умственных способностей. Можно сказать, что сред­ства обучения — это источники получения информации, как правило, это совокупность моделей самой различной природы. Различают материально-предметные (иллюстратив­ные) модели и идеальные (мысленные) модели. В свою оче­редь, материально-предметные модели подразделяются на фи­зические, предметно-математические (прямой и непрямой аналогаи) и пространственно-временные. Среди идеальных различают образные и логико-математические модели (опи­сания, интерпретации, аналогии).

Материально-предметные модели: приборы, таблицы, диа­позитивы, диафильмы и др.

Идеальные: дидактические, учебные, методические по­собия.

Учитывая двусторонний характер процесса обучения, А.П.Усова предложила свою классификацию средств обу-•- ° -*ия, выделив в ней деятельность педагога и ребенка. На л основании она разделила дидактические средства на -чуппы. Первая группа средств обеспечивает деятель-•■> педагога и характеризуется тем, что взрослый ведет у • ■< чие в основном с помощью слова. Во второй группе с t г з обучающее воздействие передается дидактическому ь ■ ^ри&пу и дидактической игре, построенной с учетом о. гро ювательных задач, т.е. наглядности и практическим дей­ствиям ребенка.

78


Классификация А.П.Усовой соответствует характеристц. ке дидактических средств, которые предложены М.А.Даки-ловым, И.Я.Лернером, М.Н.Скаткиным. Эти ученые под средствами понимают то, «с помощью чего обеспечивается передача информации — слово, наглядность, практическое действие».

Основные функции средств обучения: 1) реализуют прин­цип наглядности; 2) репрезентируют сложные абстрактные математические понятия в доступные; 3) ведут к овладению способами действий; 4) способствуют накоплению чувствен­ного опыта; 5) дают возможность воспитателю управлять по­знавательной деятельностью ребенка; 6) увеличивают объем самостоятельной познавательной деятельности детей; 7) ра­ционализируют, интенсифицируют процесс обучения. Следу­ет отметить, что эти функции постоянно меняются в связи с совершенствованием теории и практики обучения детей.

Каждое средство обучения выполняет свои определен -ные функции. Так, образ как средство обучения обеспечи­вает в основном развитие личного опыта ребенка, отражен­ного в представлениях. Действие обеспечивает формирова­ние умений и навыков. Слово (воспитателя, ребенка и художественное слово) создает возможность формирования обобщенных представлений, абстрактных понятий. Понятие «образ» несколько шире, чем наглядность. Под ним понима­ются не только разнообразные виды дидактического матери­ала, но и те образы, которые возникают на основе представ­ления памяти (М.Н.Поддьяков). Данная трактовка обуслов­лена тем, что при формировании некоторых абстрактных математических представлений обучение осуществляется на основе прошлого опыта ребенка, т.е. на основе тех образов предметов, явлений, действий, которые закрепились в его со­знании в процессе предыдущей практической деятельности.

Обучение математике в детском саду основывается на кон­кретных образах и представлениях. Эти конкретные пред­ставления подготавливают фундамент для формирования на их основе математических понятий. Без обогащения чувствен­ного познавательного опыта невозможно полноценное вла­дение математическими знаниями и умениями.

Сделать обучение наглядным — это не только создать зрительные образы, но включить ребенка непосредственно з практическую деятельность. На занятиях по математике в детском саду воспитатель в зависимости от дидактических задач использует разнообразные средства наглядности. На­пример, при обучении счету можно предложить детям реаль-

79






Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 225 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2510 - | 2325 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.