Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Турбулентность речных потоков.

Ламинарное и турбулентное течение. Режимы течения жидкости Изучение свойств потоков жидкостей и газов очень важно для промышленности и коммунального хозяйства. Ламинарное и турбулентное течение сказывается на скорости транспортировки воды, нефти, природного газа по трубопроводам различного назначения, влияет на другие параметры. Этими проблемами занимается наука гидродинамика. Ламинарное и турбулентное течение Классификация В научной среде режимы течения жидкости и газов разделяют на два совершенно разных класса: ламинарные (струйные); турбулентные. Также различают переходную стадию. Кстати, термин «жидкость» имеет широкое значение: она может быть несжимаемой (это собственно жидкость), сжимаемой (газ), проводящей и т. д. Число Рейнольдса формула История вопроса Еще Менделеевым в 1880 году была высказана идея о существовании двух противоположных режимов течений. Более подробно этот вопрос изучил британский физик и инженер Осборн Рейнольдс, завершив исследования в 1883 году. Сначала практически, а затем с помощью формул он установил, что при невысокой скорости течения перемещение жидкостей приобретает ламинарную форму: слои (потоки частиц) почти не перемешиваются и движутся по параллельным траекториям. Однако после преодоления некоего критического значения (для различных условий оно разное), названного числом Рейнольдса, режимы течения жидкости меняются: струйный поток становится хаотичным, вихревым – то есть, турбулентным. Как оказалось, эти параметры в определенной степени свойственны и газам. Практические расчеты английского ученого показали, что поведение, например, воды, сильно зависит от формы и размеров резервуара (трубы, русла, капилляра и т.д.), по которому она течет. В трубах, имеющих круглое сечение (такие используют для монтажа напорных трубопроводов), свое число Рейнольдса – формула критического состояния описывается так: Re = 2300. Для течения по открытому руслу число Рейнольдса другое: Re = 900. При меньших значениях Re течение будет упорядоченным, при больших – хаотичным. Ламинарное течение жидкости Ламинарное течение Отличие ламинарного течения от турбулентного состоит в характере и направлении водных (газовых) потоков. Они перемещаются слоями, не смешиваясь и без пульсаций. Другими словами, движение проходит равномерно, без беспорядочных скачков давления, направления и скорости. Ламинарное течение жидкости образуется, например, в узких кровеносных сосудах живых существ, капиллярах растений и в сопоставимых условиях, при течении очень вязких жидкостей (мазута по трубопроводу). Чтобы наглядно увидеть струйный поток, достаточно немного приоткрыть водопроводный кран – вода будет течь спокойно, равномерно, не смешиваясь. Если краник отвернуть до конца, давление в системе повысится и течение приобретет хаотичный характер. Турбулентный режим течения Турбулентное течение В отличие от ламинарного, в котором близлежащие частицы движутся по практически параллельным траекториям, турбулентное течение жидкости носит неупорядоченный характер. Если использовать подход Лагранжа, то траектории частиц могут произвольно пересекаться и вести себя достаточно непредсказуемо. Движения жидкостей и газов в этих условиях всегда нестационарные, причем параметры этих нестационарностей могут иметь весьма широкий диапазон. Как ламинарный режим течения газа переходит в турбулентный, можно отследить на примере струйки дыма горящей сигареты в неподвижном воздухе. Вначале частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым кажется неподвижным. Потом в каком-то месте вдруг возникают крупные вихри, которые движутся совершенно хаотически. Эти вихри распадаются на более мелкие, те – на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом. Циклы турбулентности Вышеописанный пример является хрестоматийным, и из его наблюдения ученые сделали следующие выводы: Ламинарное и турбулентное течение имеют вероятностный характер: переход от одного режима к другому происходит не в точно заданном месте, а в достаточно произвольном, случайном месте. Сначала возникают крупные вихри, размер которых больше, чем размер струйки дыма. Движение становится нестационарным и сильно анизотропным. Крупные потоки теряют устойчивость и распадаются на все более мелкие. Таким образом, возникает целая иерархия вихрей. Энергия их движения передается от крупных к мелким, и в конце этого процесса исчезает – происходит диссипация энергии при мелких масштабах. Турбулентный режим течения носит случайный характер: тот или иной вихрь может оказаться в совершенно произвольном, непредсказуемом месте. Смешение дыма с окружающим воздухом практически не происходит при ламинарном режиме, а при турбулентном – носит очень интенсивный характер. Несмотря на то, что граничные условия стационарны, сама турбулентность носит ярко выраженный нестационарный характер – все газодинамические параметры меняются во времени. Есть и еще одно важное свойство турбулентности: оно всегда трехмерно. Даже если рассматривать одномерное течение в трубе или двумерный пограничный слой, все равно движение турбулентных вихрей происходит в направлениях всех трех координатных осей. Моделирование турбулентности Среда для гидродинамических и теплофизических расчетов турбулентных течений comsol.ru 0+



<== предыдущая лекция | следующая лекция ==>
Расчет кривых свободной поверхности | Движение потока на изгиберусла.
Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 339 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.