Тема 3: Определение количественных характеристик надежности
Теоретическая часть:
Вероятность безотказной работы по статистическим данным об отказах оценивается выражением
где n(t) - число изделий, не отказавших к моменту времени t; N- число изделий, поставленных на испытания; Р*(t) - статистическая оценка вероятности безотказной работы изделия.
Для вероятности отказа по статистическим данным справедливо соотношение
где N-n(t)- число изделий, отказавших к моменту времени t; q*(t) - статистическая оценка вероятности отказа изделия.
Частота отказов по статистическим данным об отказах определяется выражением
где Δn(t) - число отказавших изделий на участке времени (t, t+Δt); f*(t) - статистическая оценка частоты отказов изделия; Δt - интервал времени.
Интенсивность отказов по статистическим данным об отказах определяется формулой
где n(t)- число изделий, не отказавших к моменту времени t; Δn(t) - число отказавших изделий на участке времени (t, t+Δt); λ*(t)- статистическая оценка интенсивности отказов изделия.
Среднее время безотказной работы изделия по статистическим данным оценивается выражением
где ti - время безотказной работы i- го изделия; N- общее число изделий, поставленных на испытания; mt* - статистическая оценка среднего времени безотказной работы изделия.
Для определения mt* по формуле (1.5) необходимо знать моменты выхода из строя всех N изделий. Можно определять mt* из уравнения
где ni - количество вышедших из строя изделий в i- ом интервале времени;
tср.i = (ti-1+ti)/2; m=tk/Δt; Δt=ti+1-ti; ti-1 -время начала i- го интервала; ti- время конца i- го интервала; tk - время, в течение которого вышли из строя все изделия; Δt-интервал времени.
Дисперсия времени безотказной работы изделия по статистическим данным определяется формулой
где Dt*- статистическая оценка дисперсии времени безотказной работы изделия.
Практическая часть
Образец решения типовых задач
Задача 1.1. На испытание поставлено 1000 однотипных электронных ламп, за 3000 час. отказало 80 ламп. Требуется определить P*(t), q*(t) при t = 3000 час.
Решение. В данном случае N= 1000; n(t)=1000-80=920; N-n(t)=1000-920=80. По формулам определяем
Задача 1.2. На испытание было поставлено 1000 однотипных ламп. За первые 3000 час. отказало 80 ламп, а за интервал времени 3000 - 4000 час. отказало еще 50 ламп. Требуется определить статистическую оценку частоты и интенсивности отказов электронных ламп в промежутке времени 3000 - 4000 час.
Решение. В данном случае N=1000; t=3000 час; Δt =1000 час; Δn(t)=50; n(t)=920.
По формулам (1.3) и (1.4) находим
Задачи для самостоятельного решения
Задача 1.3. На испытание поставлено N = 400 изделий. За время t = 3000 час отказало 200 изделий, т.е. n(t) = 400-200=200.За интервал времени (t, t+Δt), где Δt= 100 час, отказало 100 изделий, т.е. Δn(t)= 100. Требуется определить Р*(3000), P*(3100), f*(3000), λ*(3000).
Задача1.4. На испытание поставлено 6 однотипных изделий. Получены следующие значения ti (ti - время 6езотказной работы i- го изделия): t1 =280 час; t2 = 350 час; t3 =400 час; t4 =320 час; t5 =380 час; t6 =330 час.
Определить статистическую оценку среднего времени безотказной работы изделия.
Задача 1.5. За наблюдаемый период эксплуатации в аппаратуре было зафиксировано 7 отказов. Время восстановления составило:
t1 =12мин.; t2=23мин.; t3 =15мин.; t4=9мин.; t5=17мин.; t6=28мин.; t7=25мин.; t8=31мин. Требуется определить среднее время восстановления аппаратуры mtв
Задача 1.6. В результате наблюдения за 45 образцами радиоэлектронного оборудования получены данные до первого отказа всех 45 образцов, сведенные в табл.1.1. Требуется определить mе*.
Задача 1.7. На испытание поставлено 100 однотипных изделий. За 4000 час. отказало 50 изделий. За интервал времени 4000 - 4100 час. отказало ещё 20 изделий. Требуется определить f*(t),λ*(t) при t=4000 час.
Задача 1.8. На испытание поставлено 100 однотипных изделий. За 4000 час. отказало 50 изделий. Требуется определить p*(t) и q*(t) при t=4000 час.
Задача 1.9. В течение 1000 час из 10 гироскопов отказало 2. За интервал времени 1000 - 1100 час. отказал еще один гироскоп. Требуется определить f*(t), λ*(t) при t =1000 час.
Задача 1.10. На испытание поставлено 1000 однотипных электронных ламп. За первые 3000 час. отказало 80 ламп. За интервал времени 3000 - 4000 час. отказало еще 50 ламп. Требуется определить p*(t) и q*(t) при t=4000 час.
Задача 1.11. На испытание поставлено 1000 изделий. За время t=1300 час. вышло из строя 288 штук изделий. За последующий интервал времени 1300-1400 час. вышло из строя еще 13 изделий. Необходимо вычислить p*(t) при t=1300час. и t=1400 час.; f*(t), λ*(t) при t =1300 час.
Задача 1.12. На испытание поставлено 45 изделий. За время t=60 час. вышло из строя 35 штук изделий. За последующий интервал времени 60-65 час. вышло из строя еще 3 изделия. Необходимо вычислить p*(t) при t=60час. и t=65 час.; f*(t), λ*(t) при t =60 час.
Задача 1.13. В результате наблюдения за 45 образцами радиоэлектронного оборудования, которые прошли предварительную 80-часовую приработку, получены данные до первого отказа всех 45 образцов, сведенные в табл.1.2. Необходимо определить mt*.
Задача 1.14. На испытание поставлено 8 однотипных изделий. Получены следующие значения ti (ti - время безотказной работы i-го изделия):
t1 =560час.; t2=700час.; t3 =800час.; t4=650час.; t5=580час.; t6=760час.; t7=920час.; t8=850час.
Определить статистическую оценку среднего времени безотказной работы изделия.
Задача 1.15. За наблюдаемый период эксплуатации в аппаратуре было зарегистрировано 6 отказов. Время восстановления составило: t1 =15мин.; t2=20мин.; t3 =10мин.; t4=28мин.; t5=22мин.; t6=30мин. Требуется определить среднее время восстановления аппаратуры mtв *.
Задача 1.16. На испытание поставлено 1000 изделий. За время t=11000 час.
вышло из строя 410 изделий. Зв последующий интервал времени 11000-12000 час. Вышло из строя еще 40 изделий. Необходимо вычислить p*(t) при t=11000 час. и t=12000 час., а также f*(t), λ*(t) при t=11000 час.