Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принцип действия экологического фактора




Понятие условий экология заменила понятием факто­ра. Любой организм в среде своего обитания подверга­ется воздействию самых разнообразных климатических, эдафических и биотических факторов. «Экологический фактор» — это любой нерасчленяемый далее элемент среды, способный оказывать прямое или косвенное вли­яние на живые организмы хотя бы на протяжении одной из фаз их индивидуального развития. В данном опреде­лении следует особо отметить следующие критерии эко­логического фактора:

1. Нерасчленяемость данного элемента среды. Напри­мер, в качестве экологического фактора нельзя рассматри­вать глубину водоема или высоту местообитания над уров­нем моря, поскольку глубина влияет на водных обитателей не непосредственно, а через увеличение давления, умень­шение освещенности, понижение температуры, уменьше­ние содержания кислорода, повышение солености и т. д.; действие высоты осуществляется через понижение тем­пературы, атмосферного давления. Именно температура, освещенность, давление, соленость и т. д. будут выступать в качестве экологических факторов среды, оказывающих не­посредственное влияние на живые организмы.

2. Действие экологического фактора может быть не прямым, а опосредованным, т. е. в этом случае он воз­действует через многочисленные причинно-следственные связи. Пример опосредованного воздействия экологиче­ского фактора можно найти на птичьих базарах.

35

На птичьих базарах наблюдается колоссальное скопление птиц. Чем объясняется столь высокая плотность птичьего насе­ления? Основную роль здесь играют биогенные вещества: по­мет птиц падает в воду; органика в воде минерализуется бак­териями, в связи с чем в данном месте концентрируются водо­росли. Это в свою очередь ведет к повышению концентрации планктонных организмов, в основном ракообразных. Последни­ми питаются рыбы, а ими птицы, населяющие базары. Таким образом, птичий помет выступает здесь в роли экологического фактора. Как элемент среды он нерасчленим, но действует не прямо, а через сложную систему взаимодействия различных эко­логических факторов.

Какими бы разными по природе ни были экологичес­кие факторы, результаты их действия экологически срав­нимы, поскольку они всегда выражаются в изменении жизнедеятельности организмов (рис. 2.1), что в конеч­ном итоге приводит к изменению численности популя­ции. Рассмотрение этой зависимости позволяет отме­тить следующие ее закономерности:

1) при определенных значениях фактора создаются условия, наиболее благоприятные для жизнедеятельно­сти организмов; эти условия называются оптимальны-

 

 

Рис. 2.1. Влияние интенсивности фактора на жизнедеятель­ность организмов (общие закономерности). Объяснение в тексте.

36

ми, а соответствующая им область на шкале значений фактора — оптимумом;

2) чем больше отклоняются значения фактора от оп­тимальных, тем сильнее угнетается жизнедеятельность особей; в связи с этим выделяется зона их нормальной жизнедеятельности;

3) диапазон значений фактора, за границами которо­го нормальная жизнедеятельность особей становится не­возможной, называется пределами выносливости; раз­личают нижний и верхний пределы выносливости.

Так называемая экологическая толерантность охва­тывает диапазон от нижнего предела, или нижнего пессимума (ему соответствует экологический минимум на шкале значений фактора), до верхнего предела, или вер­хнего пессимума (экологический максимум). Представ­ление о лимитирующем влиянии экологического макси­мума наравне с влиянием экологического минимума ввел В. Шелфорд, сформулировавший «закон» толерантности. После 1910 г. по «экологии толерантности» были прове­дены многочисленные исследования, благодаря которым стали известны пределы существования для многих ра­стений и животных.

Закон лимитирующего фактора лежит в основе теоретичес­кого обоснования величины предельно допустимых концентра­ций (ПДК) загрязнителей. Понятно, что применительно к заг­рязняющим веществам (ксенобиотикам) нижний предел толе­рантности значения не имеет, а верхний не должен превышаться ни при каких условиях. Поэтому те пороговые значения факто­ра, при которых в организме еще не может произойти никаких необратимых патологических изменений, устанавливаемые эк­спериментально, и должны приниматься в качестве ПДК.

График зависимости жизнедеятельности особей дан­ного вида от интенсивности фактора можно получить экс­периментально или в результате наблюдений в природе. Для иллюстрации приведем данные опытов с животны­ми, помещенными в термоградиентор, или так называе­мый температурный орган. Прибор представляет собой трубку, один конец которой помещают в лед, а другой

37

опускают в водяную баню, в результате чего внутри труб­ки возникает градиент температур (рис. 2.2, 1). В трубку помещаются насекомые или другие мелкие животные, на­пример клещи, после чего изучается закономерность их распределения по трубке. Оказывается, что большинство насекомых концентрируется на каком-то одном участке. При графическом изображении данная закономерность будет иметь вид параболы (рис. 2.2, 2), где область наи­большей концентрации животных соответствует зоне тем­пературного предпочтения, или термопреферендуму.

Можно обратиться и к другому способу определения выносливости организмов к действию экологического фак-

 

 

Рис. 2.2. Закономерность распределения насекомых в термоградиенторе.

Объяснение в тексте.

тора: исследователь помещает животных в условия раз­ных температур и рассчитывает процент их выживаемос­ти за определенный промежуток времени. По результа­там опыта вычерчивается кривая, на ней выделяют уже известную нам центральную зону, которая в данном слу­чае соответствует зоне температурного оптимума.

Если мы сравним реакции на действие температуры особей двух разных видов, то окажется, что кривые термопреферендума, или термооптимума, далеко не всегда совпадают даже в случае, если значения оптимумов жиз­недеятельности равны (рис. 2.3, 1). Таким образом, ви-

38

довые приспособления проявляются и в различной сте­пени выносливости к действию фактора. Виды, особи ко­торых устойчивы лишь к небольшим отклонениям значе­ний фактора от оптимума, называются стенобионтными (рис. 2.3,7, кривая А), а виды, способные выдерживать значительные изменения фактора,— эврибионтными (кри­вая В).

Большинство обитателей моря приспособлены к высокой со­лености воды, понижение концентрации солей в воде для них губительно. Для жителей пресных водоемов также характерны узкие пределы выносливости, но уже к низкому содержанию со­лей в воде. Существует и третья группа организмов, которые способны выносить очень большие изменения солености воды и зачастую могут жить как в пресноводных, так и в морских водо­емах (трехиглая колюшка, рачок Artemia salina И др.).

В экологической литературе часто используются тер­мины, отражающие не только степень выносливости вида к изменяющимся значениям фактора, но и отражающие природу данного фактора. Так, по отношению к солено­сти различают стено- и эвригалинные виды, к темпера­туре — стено- и эвритермные виды, к влажности — сте­но- и эвригигрические, по отношению к местообитанию — стено- и эвриойкные и т. д.

 

Рис. 2.3. Реакции особей видов А и В

на действие одного фактора.

Объяснение в тексте.

39

Теперь рассмотрим случай несовпадения оптимумов жизнедеятельности у особей двух различных видов. Для этого варианта графическое сравнение дает две отдель­ные параболы (рис. 2.2, 2). Процессы жизнедеятельнос­ти у особей вида А протекают с оптимальной скоростью при меньших значениях фактора, чем у особей вида В. Если в качестве фактора рассматривается температура, то вид А будет называться холодостенотермным, а вид В — теплостенотермным. Далее, не всегда оптимумы при­ходятся на средние значения диапазона фактора: напро­тив, в природе обычны случаи, когда оптимум сдвинут к правой или левой границе пределов выносливости (рис. 2.3,3). Подобное обстоятельство важно учитывать на практике.

Как правило, термооптимум теплолюбивых видов-гидробионтов сдвинут к верхней границе выносливости (рис. 2.3, кри­вая В). Повышение температуры воды на несколько градусов в водоемах-охладителях атомных электростанций окажется для таких видов губительным. В то же время столь незначительное повышение температуры воды не окажет заметного влияния на жизнедеятельность особей холодовыносливых видов, у которых, как правило, зона оптимума сдвинута к левой границе выносливости (рис. 2.3, 3, кривая А).

Становление в эволюции толерантности в узких пре­делах можно рассматривать как форму специализации, при которой большая эффективность достигается в ущерб адаптивности, и в сообществе увеличивается разнооб­разие (см. Тему 11).





Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 223 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2217 - | 2047 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.