Около 75% всего производства монокристаллического Si ведется по методу Чохральского, который обеспечивает должный уровень качества, необходимый при изготовлении БИС (интегральных микросхем большой степени интеграции).
Метод Чохральского основан на направленной кристаллизации на затравку из большого объема расплава.
Современная установка для выращивания по Чохральскому (рисунок 3.1) представляет большой агрегат высотой более 5 м, включающий рабочую камеру, электронагреватель, прецизионную кинематическую систему, систему вакуумирования и газораспределения, устройства контроля и управления через ЭВМ.
Последовательность операций при выращивании монокристаллов следующая.
3.5.1.1 Подготовка и загрузка исходных материалов. В тигель помещают поликристаллический Si, полученный хлоридным методом, легирующую примесь, отходы монокристаллов, вакуумируют рабочую камеру, расплавляют материалы в тигле и выдерживают при Т > Тплавл
чтобы испарились летучие примеси.
3.5.1.2 Прогрев затравки. Затравка - это монокристаллический
стержень из Si малого диаметра, служащий центром кристаллизации.
Поперечное сечение затравки определяет ориентацию монокристалла: Δ - (III), □ - (100), ▬ - (110).

Рисунок 3.10 – Схема установки для выращивания слитков Si по методу Чохральского.
Прогревают затравку при высоких температурах, чтобы предотвратить термоудар, появление структурных несовершенств при опускании ее в расплав.
3.5.1.3 Выращивание шейки. Затравку опускают в расплав и с высокой скоростью поднимают, при этом из расплава "вытягивается"
тонкий кристалл малого диаметра - шейка.
3.5.1.4 Разращивание и "выход на диаметр". За счет снижения
скорости "подъема до (1,5-3) мм/мин осуществляется увеличение
диаметра до заданного номинала.
3.5.1.5 Выращивание цилиндрической части в автоматическом режиме. ЭВМ обеспечивает управление системами поддержания температуры, скорости вытягивания, подъема и опускания штока с затравкой,
вращения тигля.
3.5.1.6 Оттяжка на конус и отрыв кристалла от остатков расплава.
3.5.1.7 Медленное охлаждение кристалла, чтобы свести до минимума дефекты его структуры. Диаметр монокристаллических слитков
(75-100) мм, длина 1,5 м. Возможно выращивание слитков диаметром 150 мм и более. В заданную марку по удельному сопротивлению попадает обычно не более 50% длины слитка, остальная часть распределяется на другие марки или направляется снова в тигель для расплавления.
Недостатки метода Чохральского:
- растворение кварцевого тигля в расплаве Si со скоростью 10-6 г/(cм2. с), что обусловливает высокое содержание кислорода в слитке и малое удельное электрическое сопротивление, не более 104 Ом∙м;
- неравномерное распределение примесей, дефектов по длине слитка и по площади кристалла.
Для выращивания высокочистых монокристаллов Si г применяют метод бестигельной зонной плавки.
3.5.2. Зонная плавка кремния и германия
Метод бестигельной зонной плавки кремния основан на плавлении небольшой зоны поликремниевой цилиндрической заготовки, находящейся в вертикальном положении (рисунок 3.11).

Рисунок 3.11 – Зонная очистка Si.
Узкая расплавленная зона создается с помощью ВЧ-индуктора (5,28 МГц). Тепло за счет вихревых токов выделяется непосредственно в Si, что приводит к быстрому расплавлению конца заготовки и образованию капли, которая из-за высокого поверхностного натяжения удерживается на слитке. Снизу к этой капле подводят затравку и далее, как в методике Чохральского, вытягивается шейка, а затем цилиндр монокристалла. Таким методом можно получить Si с предельно высоким удельным сопротивлением 107 Ом∙м, но после нескольких проходов зоны, т.е. за счет бестигельной зонной очистки. Зонная очистка представляет собой кристаллизационный метод очистки, основанный на различии растворимости примеси в жидкой и твердой фазах, т.е. на явлении сегрегации. Отношение концентраций примеси в контактирующих твердой и жидкой фазах называют коэффициентом распределения Кр. Этот коэффициент меньше единицы, если введение примесного компонента понижает температуру плавления чистого вещества. В Si подавляющее большинство примесей имеет коэффициенты распределения намного меньше единицы (таблица 3.3), и в процессе направленной кристаллизации такие примеси оттесняются в объем расплава.
Таблица 3.3
| примесь | Cu | Ln | B | Al | Ge | P | Sn | As |
| Кр | 0,0045 | 10ˉ5 | 0,8 | 0,002 | 0,33 | 0,35 | 0,016 | 0,3 |
Процесс зонной плавки Ge аналогичен процессу зонной плавки Si (рисунок 3.12), только при этом Ge - слиток 3 находится в тигле-графитовой лодочке 4, заключенной в кварцевой трубке I, по которой проходит водород или инертный газ. С помощью индуктора 2, питаемого от ВЧ-генератора, получают узкую расплавленную зону 5 шириной 40-50 мм, медленно перемещающуюся вдоль образца со скоростью 50-100 мкм/с с помощью подвижной каретки 6.
В ходе зонной плавки все примеси, имеющие коэффициент распределения меньше единицы, собираются в хвостовой части слитка, которая обрезается по окончании процесса. Контроль качества слитков после данной плавки осуществляется измерением удельного сопротивления материала.

Рисунок 3.12 – Зонная очистка Ge.
Приведенные методы зонной плавки для Si и Ge являются наиболее эффективными. Вертикальная бестигельная зонная плавка для Ge невозможна, так как коэффициент поверхностного натяжения жидкого Ge в отличие от Si очень мал. Узкая расплавленная зона Si удерживается между твердыми частями слитка за счет больших сил поверхностного натяжения (рисунок 3.11).
Процесс горизонтальной зонной плавки ПП слитка по схеме рисунка 3.12 для Si не используется. Графитовая лодочка может стать источником реакции расплава Si с углеродом, что не позволит получить слитки Si высокой степени чистоты.






