Основные микробиологические процессы, протекающие при брожении теста – это спиртовое и молочнокислое брожение.
Спиртовое брожение – это основной вид брожения в пшеничном тесте. Вызывается ферментами дрожжевых клеток, которые обеспечивают превращение простейших сахаров (моносахаридов) в этиловый спирт и диоксид углерода. При этом молекула сахара гексозы (глюкозы, фруктозы) превращается в две молекулы этилового спирта и две молекулы диоксида углерода.
С6Н12О6 = 2СО2 + 2С2Н5ОН + 117,3 кДж.
Способность хлебопекарных дрожжей разрыхлять тесто зависит от активности ферментов дрожжевых клеток и от наличия сбраживаемых сахаров. Сахара в мучных полуфабрикатах хлебопекарного производства имеют несколько источников их происхождения - собственные сахара муки; сахара, получаемые под действием ферментов муки и дрожжей; сахара (сахароза), добавляемые в полуфабрикаты по рецептуре.
Технологическое значение собственных сахаров муки в виду их недостаточного количества невелико. Их достаточно только на начальный этап брожения полуфабрикатов. Источником сахара при созревании полуфабрикатов является крахмал, который под действием амилолитических ферментов муки расщепляется до α- β- декстринов и мальтозы.
В начале брожения дрожжевые клетки сбраживают глюкозу, а сбраживание фруктозы и мальтозы наступает через час и два часа соответственно.
Зимазный комплекс ферментов дрожжей обеспечивает превращение моносахаридов в спирт и диоксид углерода. Глюкоза сбраживается непосредственно, а фруктоза после изомеризации ее в глюкозу фруктоизомеразой дрожжей, которая является индуцируемым ферментом. Ферменты, сбраживающие глюкозу и сахарозу, являются конститутивными. Сахароза предварительно превращается в глюкозу и фруктозу под действием β -фруктофуранозидазы дрожжей, причем скорость ее инверсии очень высока.
При наличии мальтозы в среде дрожжевая клетка секретирует фермент мальтопермеазу и фермент α-глюкозидазу (мальтазу), расщепляющий мальтозу на две молекулы глюкозы, которая сбраживается дрожжами с образованием этилового спирта и диоксида углерода. Ферменты, участвующие в сбраживании мальтозы (мальтопермиаза и α-глюкозидаза), формируются только после того, как дрожжевые клетки оказываются в среде, содержащей этот дисахарид.
Хлебопекарные дрожжи имеют низкую мальтазную активность, так как их выращивают в среде, лишенной мальтозы (меласса). Перестройка ферментного аппарата дрожжевой клетки на образование мальтозы требует некоторого времени. Ввиду этого после сбраживания собственных сахаров муки интенсивность газообразования в тесте падает, а затем (когда начинает сбраживаться мальтоза) вновь возрастает. Такое изменение газообразования характерно для теста, приготовленного без добавления сахара.
Если тесто готовится на опаре, то дрожжевые клетки при ее брожении приспосабливаются к условиям мучной среды и их мальтазная активность повышается. Вследствие этого в тесте, приготовленном на опаре, дрожжи сбраживают мальтозу более равномерно и интенсивно.
Если в тесто добавлена сахароза, то она под действием глюкофруктозидазы (сахаразы) дрожжей превращается в глюкозу и фруктозу.
На интенсивность спиртового брожения оказывают влияние следующие факторы: температура и влажность теста, наличие ионов калия, магния, сульфатов и фосфатов, витаминов, концентрация водородных ионов, бродильная активность дрожжей, состав рецептуры, интенсивность замеса теста, присутствие в тесте улучшителей (ферментных препаратов).
Газообразование в тесте у скоряется и быстрее достигает максимума при увеличении количества дрожжей или повышении их активности, при достаточном содержании сбраживаемых сахаров, аминокислот, фосфорнокислых солей. Повышенное содержание соли, сахара, жира тормозит процесс газообразования. Брожение ускоряется при добавлении амилолитических ферментных препаратов. Особенно влияет на процесс спиртового брожения температура теста. С повышением начальной температуры теста от 26 до 35° С интенсивность газообразования возрастает в 2 раза. Интенсивный замес теста ускоряет брожение на 20–30%.
На скорость газообразования в тесте оказывает влияние размножение дрожжей. Чем меньше исходное содержание дрожжей в тесте, тем в большей степени происходит их размножение. Процесс размножения дрожжей требует достаточно длительного времени (2–2,5 ч). Если длительность брожения теста меньше этого времени, то размножения дрожжей не будет.
Продолжительность брожения опары 3,5–5,0 ч, поэтому при опарных способах происходит значительное размножение дрожжевых клеток и, вследствие этого, требуется меньшее количество дрожжей. Чем меньше продолжительность брожения теста, тем больше дрожжей необходимо вносить для нормального протекания спиртового брожения.
В конце брожения значительно увеличивается объем полуфабрикатов (на 70–100% от исходного) и снижается их плотность. Температура полуфабрикатов повышается на 1–2°С, так как дрожжи сбраживают сахара с выделением теплоты.
Масса бродящих полуфабрикатов уменьшается на 1–3% по сравнению с первоначальной. Причина этого – удаление диоксида углерода и других летучих веществ, а также испарение небольшого количества влаги с поверхности полуфабрикатов. Уменьшение сухого вещества муки в результате спиртового брожения называется технологическими затратами на брожение. Величина этих затрат зависит от продолжительности и интенсивности спиртового брожения и оказывает влияние на выход хлеба.
Молочнокислое брожение. Этот вид брожения в полуфабрикатах вызывается различными видами молочнокислых бактерий. По отношению к температуре молочнокислые бактерии делятся на термофильные (оптимальная температура 40–60° С) и нетермофильные (мезофильные), для которых оптимальной является температура 30–37° С. В полуфабрикатах хлебопекарного производства наиболее активны нетермофильные бактерии, так как температура брожения обычно не превышает 30–35 °С.
По характеру сбраживания сахаров молочнокислые бактерии делятся на гомоферментативные и гетероферментативные.
Гомоферментативные или истинные молочнокислые бактерии сбраживают сахара с образованием молочной кислоты и небольшого количества летучих кислот, а гетероферментативные или неистинные молочнокислые бактерии наряду с молочной кислотой образуют и другие кислоты (уксусную, щавелевую, винную, муравьиную и др.). К гомоферментативным бактериям относят Вас. Дельбрюка – это термофильные бактерии, температурный оптимум которых составляет 50–54° С. Существенной роли при обычной температуре опары и теста они играть не могут.
Гетероферментативные молочнокислые бактерии наряду с молочной кислотой образуют значительное количество уксусной кислоты. Температурный оптимум – 35° С.
В продуктах молочнокислого брожения под действием гомоферментативных бактерий содержится 95% молочной кислоты, а гетероферментативных – 60–70%. Жизнедеятельность всех этих бактерий вызывает повышение кислотности полуфабрикатов.
Молочнокислое брожение идет особенно интенсивно в тесте из ржаной муки. В пшеничное тесто молочнокислые бактерии попадают случайно с мукой, дрожжами, молочной сывороткой и др. Ржаное тесто готовится на заквасках, в которых созданы специальные условия для размножения молочнокислых бактерий. Отмечено, что молочнокислое брожение протекает более интенсивно в полуфабрикатах густой консистенции. В процессе брожения кислотность полуфабрикатов возрастает.
Поскольку кислотность готовых изделий не должна превышать стандартную норму, то и кислотность полуфабрикатов в конце брожения также должна быть ограничена. Кислотность теста должна быть равна кислотности мякиша готовых изделий, требуемой стандартами, +0,5 град.
Кислотность – объективный показатель готовности полуфабрикатов в процессе брожения. Состав и количество кислот теста влияют на состояние белковых веществ, активность ферментов, жизнедеятельность бродильной микрофлоры, вкус и аромат хлеба.
В пшеничном тесте доля молочной кислоты составляет около 70, а летучих кислот – около 30% от общей массы кислот. Летучими называются уксусная, муравьиная и пропионовая кислоты, так как они имеют низкую температуру кипения и легко испаряются. Среди летучих кислот теста преобладает уксусная кислота.
В ржаном тесте доля молочной кислоты составляет около 60, а летучих – около 40%. При брожении в небольшом количестве образуются и другие кислоты: масляная, валериановая, яблочная, винная. Летучие кислоты наряду с другими соединениями создают аромат хлеба и значительно влияют на его вкус. При низком содержании летучих кислот хлеб кажется несколько пресным, при повышенном – резко кислым.
На интенсивность молочнокислого брожения влияют температура и влажность полуфабрикатов, доза закваски или других продуктов, содержащих молочнокислые бактерии, состав кислотообразующей микрофлоры, интенсивность замеса теста.
Коллоидные процессы
Коллоидные процессы, происходящие при замесе и образовании теста, не завершаются в моменту его окончания, а продолжаются и при брожении теста. К моменту окончания замеса практически заканчивается только адсорбционное связывание влаги белками, крахмалом и пищевыми волокнами муки.
При брожении теста продолжают интенсивно развиваться процессы ограниченного и неограниченного набухания белков. При ограниченном набухании белков в тесте сокращается количество жидкой фазы, и, следовательно, улучшаются его реологические свойства. При неограниченном набухании и пептизации белков, наоборот, увеличивается переход белков в жидкую фазу теста и ухудшаются его реологические свойства. В тесте из муки различной силы эти процессы происходят с различной интенсивностью.
Чем сильнее мука, тем медленнее протекают в тесте процессы ограниченного набухания белков, достигая оптимума только к концу брожения. В тесте из сильной муки в меньшей степени протекают процессы неограниченного набухания и пептизации белков.
В тесте из слабой муки ограниченное набухание протекает относительно быстро и вследствие малой структурной прочности белка, ослабляемой интенсивным протеолизом, начинается процесс неограниченного набухания белков, переходящий в процесс пептизации и увеличивающий количество жидкой фазы теста. Это приводит к ухудшению реологических свойств теста.
Состояние белковых веществ под действием кислот, ферментов, влаги, добавленных улучшителей, механической обработки теста значительно изменяется. Один из наиболее важных факторов – повышение кислотности, которая ускоряет как набухание, так и пептизацию белковых веществ. Под действием кислот резко снижается количество отмываемой из теста клейковины, возрастает количество водорастворимых веществ. При брожении теста продолжается процесс неограниченного набухания высокомолекулярных пентозанов., который также приводит к изменению структуры теста.
Биохимические процессы
При брожении теста продолжается гидролиз крахмала под действием амилолитических ферментов. В результате чего интенсивно накапливается мальтоза, которая непрерывно расходуется на процесс спиртового брожения. Наиболее легко гидролизуются зерна крахмала, механически поврежденные, так как они более податливы к воздействию ферментов.
Белковые вещества гидролизуются под действием протеолитических ферментов муки, дрожжей и бактерий. Протеолиз в тесте из муки нормального качества идет медленно; при этом главным образом меняется структура белковой молекулы, а разложения белков на отдельные аминокислоты практически не происходит. Протеолиз белков в бродящем тесте, замешенном с дрожжами, происходит интенсивнее, чем в тесте без дрожжей. Это объясняется тем, что дрожжи содержат значительное количество глютатиона, способного в восстановленной форме активизировать действие протеиназы муки. Однако важно содержание в дрожжах не общего количества глютатиона, а глютатиона, способного переходить из дрожжевых клеток в окружающую их среду, т. е. в тесто. Количество такого глютатиона в прессованных дрожжах возрастает по мере их хранения, особенно в неблагоприятных условиях. Кроме того, протеолиз в бродящем тесте активируется, по-видимому, в результате того, что внесение в тесто дрожжей сдвигает его окислительно-восстановительный потенциал в направлении усиления восстановительных свойств. Восстановительное же действие влияет на все элементы белково-протеиназного комплекса муки в тесте: протеиназа активируется, окисленная часть активаторов протеолиза восстанавливается и атакуемость белков повышается.
Протеолиз, происходящий в пшеничном тесте, в основном, важен не по образованию весьма незначительного количества продуктов глубокого распада белка, а по его дезагрегирующему действию на белки.
Ошибочно считать, что любая степень протеолиза в тесте из муки любой силы вредна. Например, в тесте из сильной муки известная степень протеолиза даже необходима для достижения им реологических свойств, оптимальных для получения хлеба наилучшего качества.
Окраска корки хлеба обусловливается меланоидинами, образующимися в результате взаимодействия восстанавливающих сахаров с продуктами протеолитического распада белков. Поэтому и с этой точки зрения известная степень протеолиза в тесте необходима.
Протеолиз в пшеничном тесте необходим и для приведения набухших белков теста в состояние, оптимальное для получения хлеба с наилучшей структурой пористости.
Однако интенсивность протеолиза в тесте не должна превышать оптимума, зависящего от силы муки и ряда других факторов.
Чрезмерно интенсивный протеолиз, обычно наблюдаемый в тесте из очень слабой муки, дезагрегируя в значительной мере структурно непрочные белки такой муки, приводит к резкому увеличению неограниченного набухания и пептизации белков теста. В результате несоразмерно увеличивается жидкая фаза теста, которое по консистенции получается малопригодным для механической обработки на округлительных и закаточных машинах. При расстойке и выпечке тестовые заготовки сильно расплываются, давая хлеб недостаточного объема и недопустимо расплывшийся.
В связи с этим интенсивность протеолиза в тесте из слабой и даже средней по силе муки целесообразно снижать. Это возможно некоторым увеличением поваренной соли в опаре и тесте, внесением улучшителей окислительного действия.
Высокомолекулярные пентозаны муки в тесте подвергаются гидролизу под действием соответствующих ферментов, увеличивая при этом количество жидкой фазы теста.
В результате комплексного влияния процессов, протекающих при брожении теста, оно становится менее вязким и более пластичным, улучшается состояние клейковинного каркаса. Под действием выделяющегося диоксида углерода пленки клейковины растягиваются, а при делении и округлении слипаются снова, что способствует улучшению реологических свойств теста, образованию мелкой и равномерной пористости в мякише изделий.