Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


II. Изучение нового материала.

1. Разобрать решение задачи № 3 на доске и в тетрадях.

Построить треугольник по трем сторонам (рис. 141 и решение задачи на с. 85–86 учебника). Провести исследование, всегда ли задача № 3 имеет решение.

2. Решить задачи №№ 286, 289, 290 (б), 291 (в), 292, 293 на доске и в тетрадях. Решение задачи № 293 приведено в учебнике на с. 88–89.

III. Самостоятельная работа (проверочного характера) (20–25 мин).

Вариант I

1. Постройте прямоугольный треугольник по катету и прилежащему острому углу.

2. Даны отрезки PQ и P 1 Q 1 и угол hk. Постройте треугольник СDЕ так, чтобы СЕ = PQ, С = hk, СF = P 1 Q 1, где СF – высота треугольника.

Вариант II

1. Постройте равнобедренный треугольник по основанию и медиане, проведенной к основанию.

2. Даны отрезки PQ и P 1 Q 1 и P 2 Q 2. Постройте треугольник ЕKF так, чтобы ЕF = PQ, KF = P 1 Q 1 и FD = P 2 Q 2, где FD – высота треугольника.

IV. Итоги урока.

Домашнее задание: пункты 37–38; вопросы 14–20 на с. 90; решить задачи №№ 273, 287, 288, 291 (а, б, г).

 

Урок 60
РЕШЕНИЕ ЗАДАЧ. ПОДГОТОВКА К КОНТРОЛЬНОЙ РАБОТЕ

Цели: закрепить в процессе решения задач усвоение изученного материала по теме «Прямоугольные треугольники», продолжить формирование навыков в решении задач на построение.

Ход урока

I. Оргмомент.

II. Решение задач.

1. На доске и в тетрадях решить задачи №№ 301, 302, 308, 310, 314 (б, в), 315 (а, ж, з), 318.

2. Построить прямоугольный треугольник по гипотенузе и внешнему углу при вершине острого угла.

Решение

Начертим данные отрезок PQ и угол hk.

Построение

1) Проведем прямую, отметим на ней точку В и отложим отрезок ВС, равный PQ.

2) Отложим от луча ВD, являющегося продолжением луча ВС, угол DВМ, равный углу hk.

3) Построим прямую, проходящую через точку С и перпендикулярную к прямой ВМ, и обозначим буквой А точку пересечения этой прямой с лучом ВМ. Треугольник АВС искомый.

Доказательство
(устно)


По построению треугольник АВС – прямоугольный, гипотенуза ВС равна данному отрезку РQ и внешний угол АВD треугольника равен данному углу hk. Таким образом, построенный треугольник АВС удовлетворяет всем условиям задачи.

Указание: задача имеет решение только в том случае, когда данный угол hk тупой. Желательно, чтобы учащиеся сами обосновали справедливость этого утверждения.

III. Итоги урока.

Домашнее задание: подготовиться к контрольной работе, повторить пункты 34–38; решить задачи №№ 307, 314 (а), 315 (а).

Урок 61
КОНТРОЛЬНАЯ РАБОТА № 5 «ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК»

Цели: проверить знания учащихся и их умение решать задачи; выяснить пробелы в знаниях учащихся с тем, чтобы их ликвидировать на уроках повторения.

Ход урока

I. Организация учащихся на выполнение работы по двум вариантам.



<== предыдущая лекция | следующая лекция ==>
I. Анализ результатов самостоятельной работы. | Объяснение нового материала.
Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 440 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2506 - | 2322 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.