1. Разобрать решение задачи № 3 на доске и в тетрадях.
Построить треугольник по трем сторонам (рис. 141 и решение задачи на с. 85–86 учебника). Провести исследование, всегда ли задача № 3 имеет решение.
2. Решить задачи №№ 286, 289, 290 (б), 291 (в), 292, 293 на доске и в тетрадях. Решение задачи № 293 приведено в учебнике на с. 88–89.
III. Самостоятельная работа (проверочного характера) (20–25 мин).
Вариант I
1. Постройте прямоугольный треугольник по катету и прилежащему острому углу.
2. Даны отрезки PQ и P 1 Q 1 и угол hk. Постройте треугольник СDЕ так, чтобы СЕ = PQ, С = hk, СF = P 1 Q 1, где СF – высота треугольника.
Вариант II
1. Постройте равнобедренный треугольник по основанию и медиане, проведенной к основанию.
2. Даны отрезки PQ и P 1 Q 1 и P 2 Q 2. Постройте треугольник ЕKF так, чтобы ЕF = PQ, KF = P 1 Q 1 и FD = P 2 Q 2, где FD – высота треугольника.
IV. Итоги урока.
Домашнее задание: пункты 37–38; вопросы 14–20 на с. 90; решить задачи №№ 273, 287, 288, 291 (а, б, г).
Урок 60
РЕШЕНИЕ ЗАДАЧ. ПОДГОТОВКА К КОНТРОЛЬНОЙ РАБОТЕ
Цели: закрепить в процессе решения задач усвоение изученного материала по теме «Прямоугольные треугольники», продолжить формирование навыков в решении задач на построение.
Ход урока
I. Оргмомент.
II. Решение задач.
1. На доске и в тетрадях решить задачи №№ 301, 302, 308, 310, 314 (б, в), 315 (а, ж, з), 318.
2. Построить прямоугольный треугольник по гипотенузе и внешнему углу при вершине острого угла.
Решение
Начертим данные отрезок PQ и угол hk.
Построение
1) Проведем прямую, отметим на ней точку В и отложим отрезок ВС, равный PQ.
2) Отложим от луча ВD, являющегося продолжением луча ВС, угол DВМ, равный углу hk.
3) Построим прямую, проходящую через точку С и перпендикулярную к прямой ВМ, и обозначим буквой А точку пересечения этой прямой с лучом ВМ. Треугольник АВС искомый.
Доказательство
(устно)
По построению треугольник АВС – прямоугольный, гипотенуза ВС равна данному отрезку РQ и внешний угол АВD треугольника равен данному углу hk. Таким образом, построенный треугольник АВС удовлетворяет всем условиям задачи.
Указание: задача имеет решение только в том случае, когда данный угол hk тупой. Желательно, чтобы учащиеся сами обосновали справедливость этого утверждения.
III. Итоги урока.
Домашнее задание: подготовиться к контрольной работе, повторить пункты 34–38; решить задачи №№ 307, 314 (а), 315 (а).
Урок 61
КОНТРОЛЬНАЯ РАБОТА № 5 «ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК»
Цели: проверить знания учащихся и их умение решать задачи; выяснить пробелы в знаниях учащихся с тем, чтобы их ликвидировать на уроках повторения.
Ход урока
I. Организация учащихся на выполнение работы по двум вариантам.