Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пример решения задачи методом искусственного

  базиса

 

Выделить допустимое базисное решение для задачи ЛП.

 

 

Приведем задачу к канонической форме на минимум с неотрицательными правыми частями.

 

 

Заметим, что переменные  и  можно использовать для введения в исходный базис, поэтому в первую и третью строку ограничений можно не вводить искусственные переменные.

Во вторую строку ограничений вводим искусственную переменную z, потому что в этой строке нет переменной, которую можно взять базисной, не проводя при этом дополнительных преобразований всей системы ограничений.

 

Полученная вспомогательная задача имеет вид

Приведем задачу к виду (16):

Выпишем соответствующую симплексную таблицу:

 

  B
10 5 4 -1
3 3 -2 0
10 5 4 -1
5 2 1 0

 

Ведущий столбец рекомендуется выбирать не по максимальному положительному элементу строки целевой функции, а так, чтобы из базиса выводилась искусственная базисная переменная (соответствующая ведущая строка должна быть строкой искусственной переменной). Так, выбрав ведущим столбцом столбец переменной , получим ведущую строку – строку с переменной z (выбирая ведущим столбцом , получили бы ведущую строку  и из базиса выводилась бы переменная ).

Итак, искусственная переменная z выйдет из базиса, а переменная  введется в базис.

Симплексная таблица преобразуется к виду

 

  B
0 0 -1 0
8 11/2 1/2 -1/2
5/2 5/4 1/4 -1/4
5/2 3/4 -1/4 1/4

 

Так как значение , то полученный базис  является начальным допустимым базисом для исходной задачи ЛП. Чтобы выразить целевую функцию  через небазисные переменные , подставим значение базисной переменной  в целевую функцию. В результате получим

Тогда исходная задача будет иметь вид специальной формы задачи ЛП:

что и требовалось получить в результате решения вспомогательной задачи.

 

Пример решения задачи двойственным

  симплекс-методом

 

Решить задачу ЛП двойственным симплекс-методом.

Приводим задачу к каноническому виду:

Знаки в ограничениях заменили противоположными для того, чтобы переменные  и  можно было взять в качестве базисных. Симплексная таблица имеет вид

 

  b
L 0 -1 -1 0
-2 -1 1 -1
-1 -2 -1 1

 

Таблица двойственно-допустимая, но не оптимальная. Выбираем ведущую строку – это строка переменной , ведущий столбец – это столбец переменной . После преобразования таблица принимает вид

 

  b
L 0 -1 -1 0
2 1 -1 -1
-3 -3 0 1

 

Так как в столбце b есть отрицательная переменная , то эту строку выбираем ведущей, а столбец переменной  будет ведущим столбцом. После преобразования получаем таблицу:

 

  b
L 1 -1/3 -1 -1/3
1 1/3 -1 -2/3
1 -1/3 0 -1/3

 

которая является оптимальной. Соответствующее оптимальное решение имеет вид .



<== предыдущая лекция | следующая лекция ==>
Пример графического решения задачи ЛП | Пример построения двойственной задачи
Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 226 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2332 - | 2141 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.