Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пример графического решения

Решить графически задачу ЛП, заданную в канонической форме:

                   (6)

                                  (7)

                                                       (8)

Число уравнений задачи m=3, число неизвестных n=5. Тогда n-m=2 и задача может быть сведена к задаче на плоскости относительно свободных переменных. Возьмем в качестве базисных переменные  и выразим их через свободные (небазисные переменные):

                                              (9)

По условию (8) переменные могут принимать только неотрицательные значения, т. е. допустимой областью задачи ЛП (6) - (8) будет область, определяемая условиями (8), (9), или

                                         (10)

Чтобы получить задачу ЛП относительно переменных , подставим значения базисных переменных (9) в целевую функцию (6). В результате получим

                                    (11)

Задача (10), (11) эквивалентна задаче (6) - (8), поэтому решая графически задачу (10), (11), получим решение задачи (6) - (8).

Этап 1. Построение допустимой области.

Каждое из неравенств (10) определяет некоторую полуплоскость :

Так, неравенство  определяет правую полуплоскость. Неравенство  определяет полуплоскость, лежащую по ту сторону от прямой , где . Подставляя значения  в это неравенство, получим 0>-2, значит, координаты (0,0) удовлетворяют первому неравенству (10) и область решений этого неравенства включает начало координат. Аналогично определяют полуплоскости остальных неравенств (10).

На рисунке прямые, соответствующие условию , отмечены цифрой в скобках.

Получили допустимую область M – выпуклый пятиугольник OABCD.

Этап 2. В допустимой области M находим оптимальное решение.

Строим прямую  и определяем направление возрастания функции , это направление вектора . Перемещая прямую L параллельно самой себе в направлении вектора  до тех пор, пока она будет сохранять общие точки с областью допустимых решений, найдем, что в крайнем возможном положении прямая L пройдет через точку . Этому положению прямой L соответствует значение . Для нахождения координат точки  необходимо совместно решить систему уравнений граничных прямых, на которых лежит точка :

В результате получаем искомое оптимальное решение . Подставляя значения  и  в целевую функцию и в равенства (9), получим оптимальное значение целевой функции  и оптимальное решение:

Численные методы решения задач ЛП

Симплекс-метод

Рассмотрим задачу ЛП в канонической форме:

                    (12)

                                        

………………………                                    (13)  

                                 (14)

Будем предполагать, что  (иначе, умножим соответствующее уравнение на -1, уравнения системы (13) линейно независимы, m<n и система (13) - (14) совместна.

При сделанных предположениях можно выбрать m неизвестных (к примеру ) таких, чтобы определитель, составленный из коэффициентов при этих неизвестных, не обращался в ноль. Тогда задача (12) - (14) может быть приведена к виду, который называется специальной формой задачи ЛП:

                              

……………………………………..                        (15)  

Одно из допустимых решений этой задачи можно найти, если переменные  положить равными нулю. Такое решение называется допустимым базисным решением. Оно имеет вид

.

Этому решению соответствует значение целевой функции . Переменные  называют базисными, набор переменных  называют базисом, а переменные  называют небазисными или свободными. Число возможных базисов в задаче размерности n с m ограничениями не превосходит величину .

Известно, что каждому допустимому базисному решению соответствует вершина многоугольника допустимых решений и оптимальное решение задачи (при условии его существования) достигается в одной из вершин многоугольника. Поэтому оптимальное решение задачи ЛП находится среди допустимых базисных решений. Существуют рациональные способы последовательного перебора допустимых базисных решений, которые позволяют рассматривать не все допустимые базисные решения, а их минимальное число. К таким методам относится симплекс-метод [1,2,3].



<== предыдущая лекция | следующая лекция ==>
Графическое решение задач ЛП | Метод искусственного базиса
Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 227 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2281 - | 2207 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.