Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методика факторного анализа в случае нескольких объясняющих факторов




 

В общем случае для объяснения корреляционной матрицы потребуется не один, а несколько факторов. Каждый фактор характеризуется столбцом, каждая переменная - строкойматрицы . Фактор называется генеральным, если все его нагрузки значительно отличаются от нуля и он имеет нагрузки от всех переменных. Генеральный фактор имеет нагрузки от всех переменных и схематически такой фактор изображен на рис.1. столбцом .Фактор называется общим, если хотя бы две его нагрузки значительно отличаются от нуля. Столбцы , на рис. 1. представляют такие общие факторы. Они имеют нагрузки от более чем двух переменных. Если у фактора только одна нагрузка, значительно отличающаяся от нуля, то он называется характерным фактором (см. столбцы на рис. 1.) Каждый такой фактор представляет только одну переменную. Решающее значение в факторном анализе имеют общие факторы. Если общие факторы установлены, то характерные факторы получаются автоматически. Число высоких нагрузок переменной на общие факторы называется сложностью. Например, переменная на рис.1. имеет сложность 2, а переменная - три.

Рис. 1. Схематическое изображение факторного отображения. Крестик означает высокую факторную нагрузку.

Итак, построим модель

, (4)

где - ненаблюдаемые факторы m < k,

- наблюдаемые переменные (исходные признаки),

- факторные нагрузки,

- случайная ошибка связанная только с с нулевым средним и дисперсией :

и - некорpелированы,

- некоррелированные случайные величины с нулевым средним и единичной дисперсией .

Тогда

(5)

Здесь - i -ая общность представляющая собой часть дисперсии , обусловленная факторами, - часть дисперсии , обусловленная ошибкой. В матричной записи факторная модель примет вид:

(6)

где - матрица нагрузок, - вектор факторов, - вектор ошибок.

Корреляции между переменными, выраженные факторами, можно вывести следующим образом:

, (7)

где - диагональная матрица порядка , содержащая дисперсии ошибок[i]. Основное условие: - диагональная, - неотрицательно определенная матрица. Дополнительным условием единственности решения является диагональность матрицы .

Имеется множество методов решения факторного уравнения. Наиболее ранним методом факторного анализа является метод главных факторов, в котором методика анализа главных компонент используется применительно к редуцированной корреляционной матрице с общностями на главной диагонали. Для оценки общностей обычно пользуются коэффициентом множественной корреляции между соответствующей переменной и совокупностью остальных переменных.

Факторный анализ проводится исходя из характеристического уравнения, как и в анализе главных компонент:

(8)

Решая которое, получают собственные числа λi и матрицу нормированных (характеристических) векторов V, и затем находят матрицу факторного отображения:

Для получения оценок общностей и факторных нагрузок используется эмпирический итеративный алгоритм, который сходится к истинным оценкам параметров. Сущность алгоритма сводится к следующему: первоначальные оценки факторных нагрузок определяются с помощью метода главных факторов. На основании корреляционной матрицы R формально определяются оценки главных компонент и общих факторов:

(9)

где - соответствующее собственное значение матрицы R;

- исходные данные (вектор-столбцы);

- коэффициенты при общих факторах;

- главные компоненты (вектор-столбцы).

Оценками факторных нагрузок служат величины

(10)

Оценки общностей получаются как

(11)

На следующей итерации модифицируется матрица R - вместо элементов главной диагонали подставляются оценки общностей, полученные на предыдущей итерации; на основании модифицированной матрицы R с помощью вычислительной схемы компонентного анализа повторяется расчет главных компонент (которые не являются таковыми с точки зрения компонентного анализа), ищутся оценки главных факторов, факторных нагрузок, общностей, специфичностей. Факторный анализ можно считать законченным, когда на двух соседних итерациях оценки общностей меняются слабо.

Примечание. Преобразования матрицы R могут нарушать положительную определенность матрицы R+ и, как следствие, некоторые собственные значения R+ могут быть отрицательными.

Для лучшей интерпретации полученных общих факторов к ним применяется процедура вращения. Если факторный анализ ведется в терминах главных компонент, то значения факторов могут быть вычислены непосредственно. В случае вращения главных компонент соотношения, связывающие исходные переменные и значения факторов, несколько усложняются. Ниже в матричном виде приведено соотношение, оптимальное по скорости вычисления, а также независимое от метода вращения факторов:

 

(12)

- повернутая матрица A,

A - матрица коэффициентов при общих факторах,

- диагональная матрица m собственных членов,

- матрица исходных данных,

- матрица m повернутых факторов.

При определении числа общих факторов руководствуются следующими критериями: число существенных факторов можно оценить из содержательных соображений, в качестве числа общих факторов m берется число собственных значений, больших либо равных единице (по умолчанию), выбирается число факторов, объясняющих определенную часть общей дисперсии или суммарной мощности

 

Литература по теме 6:

1. Окунь Я. Факторный анализ/ пер. с польск. – Москва: «Статистика», 1974. - 200 с.

  1. Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы/ - Москва, «Финансы и статистика», 2000. - 352

 

 


[i] Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы/ - Москва, «Финансы и статистика», 2000. - 352 с.





Поделиться с друзьями:


Дата добавления: 2017-04-15; Мы поможем в написании ваших работ!; просмотров: 548 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2322 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.