Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Мощность в цепи несинусоидального тока




 

Под активной мощностью P понимают количество энергии, потребляе­мое (генери­руемое) объектом за единицу времени. Математически активную мощность определяют как среднее значение мгновенной мощности за полный период.

Пусть некоторый элемент цепи потребляет ток i (t) при несинусои­дальном напря­жении u (t):

Мгновенная мощность , тогда активная мощность будет равна:

Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей от­дельных гармоник:

Реактивная мощность Q несинусоидального тока определяется по анало­гии с ак­тив­ной мощностью P как алгебраическая сумма реактивных мощностей от­дельных гармоник:

Как известно, реактивная мощность Q синусоидального тока характери­зует интенсив­ность колеба­ний энергии () с частотой w между элек­тромагнитным полем эле­мента и осталь­ной цепью. В цепи несинусоидального тока колебания энергии происходят на разных часто­тах. Сложение реактивных мощностей отдельных гармоник, характеризующих колебания энергии на раз­ных частотах, лишено физического смысла. Математически может получиться, что реактивные мощности отдельных гармоник имеют разные знаки и в сумме дают нуль, хотя колебания энергии при этом имеют место. Таким образом, для цепи несину­соидального тока понятие реактивной мощности лишено физиче­ского смысла.

Для цепи несинусоидального тока применяется также и понятие полной мощности, которая определяется как произведение действующих значений на­пряжения и тока:

Как известно, для цепи синусоидального тока мощности P, Q, S образуют прямо­уголь­ный треугольник, из которого следует соотношение: . Для цепей несину­сои­дального тока это соотношение между мощностями вы­полня­ется только для резистивных элементов, в которых в соответствии с зако­ном Ома () формы кривых функций u (t) и i (t) идентичны. Если в цепи содержатся реактивные элементы L и С, то это соотношение не выполняется: . Для баланса этого уравнения в его правую часть вносят добавле­ние: , откуда

где Т - мощность искажения – понятие математическое, характеризует степень различия в формах кривых напряжение u (t)и тока i (t).

6. Коэффициенты, характеризующие несинусоидальные функции u (t), i (t)

 

Пусть несинусоидальная функция u (t)содержит только гармонические составляю­щие:

Несинусоидальные функции токов и напряжений, не содержащие посто­янных со­став­ляющих () характеризуются следующими пара­мет­рами и коэффициен­тами.

Действующее значение всей функции определяется по формуле:

.

Действующее значение высших гармоник:

.

Максимальные значения функции в положительной области () и в отрица­тель­ной области () не будут равны друг другу при наличии в гар­моническом ряду функ­ции четных гармоник и зависят как от амплитуд отдель­ных гармоник, так и от их фазо­вых сдвигов (начальных фаз).

Среднее по модулю значение функции определяется как среднеарифме­тическое зна­чение модулей мгновенных значений функции за полный период:

.

Среднее значение функции зависит как от амплитуд отдельных гармо­ник, так и от их начальных фаз.

Коэффициентом амплитуды функции называется величина, равная от­ношению ее максимального (по модулю) значения к действующему значению:

для синусоиды.

Коэффициентом формы кривой функции называется величина, равная от­ношению действующего значения функции к ее среднему значению:

для синусоиды.

Коэффициентом k -ой гармоники называется величина, равная отношению дейст­вую­щего значения (амплитуды) k -ой гармоники к действующему значе­нию (амплитуде) ос­новной гармоники:

.

 

Коэффициентом искажения синусоидальности формы кривой функции называется величина, равная отношению действующего значения всех высших гармоник к действую­щему значению основной гармоники:

.

Для приемников, работающих в несинусоидальном режиме, применяется понятие ко­эффициента мощности, который определяется как отношение ак­тивной мощности P к пол­ной мощности S:

.

 





Поделиться с друзьями:


Дата добавления: 2017-04-15; Мы поможем в написании ваших работ!; просмотров: 381 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2135 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.