Глава 4. ЭНЕРГИЯ И ИНДУСТРИАЛЬНЫЙ ВЕК
1. Тепло — соперник гравитации
Ignis mutat res. Это высказывание, известное с незапамятных времен, всегда связывало химию с «наукой об огне». В XVIII в., начиная с концептуальной перестройки, вынудившей науку пересмотреть то, что ранее отвергалось ею во имя механистического мировоззрения, а именно такие понятия, как «необратимость» и «сложность», огонь стал частью экспериментальной науки.
Огонь преобразует материю. Он приводит к химическим реакциям, к таким процессам, как плавление и испарение. Огонь заставляет топливо сгорать и высвобождать тепло. Из всех этих общеизвестных фактов наука XIX в. сосредоточила внимание на одном; горение сопровождается выделением тепла, а подвод тепла может вызывать увеличение объема, в результате чего горение совершает работу. Таким образом, огонь приводит к созданию машины нового типа — тепловой машины, — технологическому новшеству, ставшему основой индустриального общества1.
Интересно отметить, что Адам Смит работал над своим «Исследованием о природе и причинах богатства народов» и собирал данные о перспективах и определяющих факторах роста промышленности в том самом университете, в стенах которого Джеймс Уатт завершал доводку своей паровой машины. Тем не менее Адам Смит смог найти для каменного угля единственно полезное применение — как источник тепла. (В XVIII в. еще не были известны другие источники энергии, кроме воды, ветра, мускульной силы животных и приводимых ими в движение простейших машин.)
Быстрое распространение британской паровой машины вызвало новый интерес к механическому действию теплоты, и термодинамика, детище этого интереса, занималась не столько выяснением природы тепла, сколько скрытыми в тепле возможностями производства «механической энергии».
Что же касается рождения «науки о сложности», то мы предлагаем датировать его 1811 годом, когда барону Жан-Батисту Жозефу Фурье, префекту Изера, была присуждена премия Французской академии наук за математическую теорию распространения тепла в твердых телах.
Установленный Фурье результат был удивительно прост и изящен: поток тепла пропорционален градиенту температуры. Замечательно, что этот простой закон применим к веществу, в каком бы состоянии оно ни находилось: твердом, жидком или газообразном. Кроме того, закон Фурье выполняется независимо от химического состава тела, будь оно из золота или из железа. Специфическим для каждого вещества является коэффициент пропорциональности между тепловым потоком и градиентом температуры.
Ясно, что универсальный характер закона Фурье не связан непосредственно с динамическими взаимодействиями, описываемыми законом Ньютона, поэтому формулировку закона теплопроводности можно рассматривать как исходную точку науки нового типа. Действительно, простота предложенного Фурье математического описания распространения тепла разительно контрастирует со сложностью вещества, рассматриваемого с точки зрения его молекулярного строения. Твердое тело, газ или жидкость представляют собой макроскопические системы, состоящие из огромного числа молекул, и тем не менее теплопроводность описывается одним-единственным законом. Фурье вывел свой закон в то время, когда в европейской науке школа Лапласа занимала господствующее положение. Лаплас, Лагранж и их ученики пытались объединенными усилиями критиковать теорию Фурье, но были вынуждены отступить2. Сбывшаяся было мечта Лапласа потерпела первое поражение. Фурье создал физическую теорию, не уступавшую по математической строгости механическим законам движения, но в то же время остававшуюся совершенно чуждой ньютоновскому миру. С момента появления теории теплопроводности Фурье математика, физика и ньютоновская наука перестали быть синонимами.
Открытие закона теплопроводности имело непреходящее значение. Интересно отметить, что с появлением закона Фурье исторические пути развития физики во Франции и Англии разошлись и к современному этапу французские физики и их английские коллеги следовали различными маршрутами.
Во Франции крушение мечты Лапласа привело к позитивистской классификации науки на иерархически упорядоченные отделы, предложенные Огюстом Контом. Контовская классификация науки была подробно проанализирована Мишелем Серром3. В физике сосуществуют две универсалии: тепло и гравитация. Более того, как вынужден признать позднее Конт, эти две универсалии — антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, которое приобретает или передает. Тепло преобразует вещество, определяет изменения состояния и вызывает изменения внутренних свойств. В некотором смысле это было подтверждением протеста химиков-антиньютонианцев и всех тех, кто подчеркивал различие между чисто пространственно-временным поведением, приписываемым массе, и специфической активностью вещества. Именно такое различие и было принято за основу классификации наук, проведенной Контом по общему признаку — порядку, т. е. равновесию. К механическому равновесию сил позитивистская классификация просто добавила понятие теплового равновесия.
С другой стороны, в Британии с появлением теории распространения тепла отнюдь не прекратились попытки объединения всех областей знания, более того, там наметилось новое направление научных исследований — первые шаги в создании теории необратимых процессов.
Закон Фурье, если его применить к изолированному телу с неоднородным распределением температуры, описывает постепенное установление равновесия. Теплопроводность приводит к все большему выравниванию распределения температуры до тех пор, пока распределение во всем теле не станет однородным. Всякий знает, что выравнивание температуры — процесс необратимый. Еще столетие назад Берхаве подчеркивал, что тепло всегда распространяется и выравнивается. Таким образом, наука о сложных явлениях (основанных на взаимодействии большого числа частиц) и временная асимметрия с самого начала оказались взаимосвязанными. Но теплопроводность стала исходным пунктом исследований природы необратимости не раньше, чем была установлена ее связь с понятием «диссипация», рассматриваемым с инженерной точки зрения4.
Познакомимся несколько подробнее со структурой новой «науки о тепле» в том виде, в каком она сложилась в начале XIX в. Подобно механике, наука о тепле включала в себя и оригинальную концепцию физического объекта, и определение машины, или двигателя, т. е. отождествление причины и следствия в специфическом способе производства механической работы.
При исследовании физических процессов, связанных с теплом, состояние системы необходимо задавать, указывая не положения и скорости ее составных частей (в объеме газа порядка 1 см3 содержится около 1023 молекул), как в случае динамики, а некоторую совокупность макроскопических параметров, таких, как температура, давление, объем и т. д. Кроме того, необходимо учитывать граничные условия, описывающие отношение системы к окружающей среде.
В качестве примера рассмотрим одно из характерных свойств макроскопической системы — ее удельную теплоемкость. Напомним, что удельной теплоемкостью называется количество тепла, которое необходимо сообщить системе, чтобы поднять ее температуру на один градус при постоянном объеме или давлении. Чтобы исследовать удельную теплоемкость (например, при постоянном объеме), систему необходимо привести во взаимодействие с окружающей средой: система должна получить определенное количество тепла, в то время как объем ее поддерживается постоянным, а температура может изменяться.
В более общем случае систему можно подвергнуть механическому воздействию (например, поддерживать постоянство давления или объема с помощью поршня), тепловому воздействию (подводить к системе или отводить от нее некоторое количество тепла) или химическому воздействию (создавать поток реагирующих веществ и продуктов реакции между системой и окружающей средой). Как мы уже упоминали, давление, объем, химический состав и температура являются классическими физико-химическими параметрами, через которые выражаются свойства макроскопических систем. Термодинамику можно определить как науку о корреляции между изменениями этих свойств. Следовательно, термодинамические объекты приводят к новой по сравнению с динамическими объектами точке зрения. Цель теории состоит не в предсказании поведения системы в терминах взаимодействия частиц, а в предсказании реакции системы на изменения, вводимые нами извне.
Механическое устройство (машина) возвращает в виде работы потенциальную энергию, полученную им из внешнего мира. Причина и следствие имеют одинаковую природу и, по крайней мере в идеальном случае, эквивалентны. Действие тепловой машины, в отличие от механического устройства, сопряжено с материальными изменениями состояний, включающими преобразование механических свойств системы, расширением и увеличением объема. Производимую тепловым двигателем работу следует рассматривать как результат подлинного процесса преобразования, а не только передачи движения. Таким образом, тепловая машина — не пассивное устройство. Строго говоря, она производит движение. С этой особенностью тепловой машины связана новая проблема: чтобы восстановить способность системы производить движение, ее необходимо возвратить в начальное состояние. Следовательно, необходим второй процесс, второе изменение состояния, которое компенсировало бы то изменение, которое производит движение. В тепловой машине таким вторым процессом, противоположным первому, является охлаждение системы до начальных значений температуры, давления и объема.
Понятие необратимого процесса было введено в физику в связи с проблемой повышения коэффициента полезного действия (кпд) тепловых машин, т. е. отношения между производимом работой и теплом, которое необходимо подвести к системе, чтобы осуществить два взаимно компенсирующих, процесса. Мы еще вернемся к вопросу о значении закона Фурье для этой проблемы, но сначала опишем ту существенную роль, которую играет закон сохранения энергии.
2. Принцип сохранения энергии
Мы уже отмечали, что в классической динамике энергия занимает центральное место. Гамильтониан (сумму кинетической и потенциальной энергий) можно представить в канонических переменных — координатах и импульсах. В процессе движения значения канонических переменных изменяются, значение же гамильтониана остается постоянным. Динамическое изменение лишь перераспределяет относительную значимость потенциальной и кинетической энергий, оставляя неизменной их сумму.
Начало XIX в. совпало с бурным периодом в истории экспериментальной физики5. Нескончаемая вереница открытий показала физикам, что движение способно порождать не только изменения в относительных положениях тел в пространстве. Новые процессы, открытые в лабораториях, постепенно создали сеть, связавшую воедино все новые области физики с другими более традиционными областями, например с механикой. Одну из таких связей неожиданно обнаружил Гальвани. До него были известны только статические электрические заряды. Производя опыты с препаратами лапок лягушек, Гальвани впервые экспериментально наблюдал действие электрического тока. А. Вольта вскоре понял, что «гальванические» сокращения лапок лягушки вызывает проходящий через них электрический ток. В 1800 г. Вольта построил химическую батарею: стало возможным получать электричество с помощью химических реакций. Затем был открыт электролиз: электрический ток позволял изменять химическое сродство и проводить химические реакции. Но электрический ток давал также свет и тепло, а в 1820 г. Эрстед обнаружил, что электрический ток оказывает действие и на магнитную стрелку. В 1822 г. Зеебек показал, что тепло может быть источником электричества, а в 1834 г. им был открыт способ охлаждения вещества с помощью электричества. В 1831 г. Фарадей индуцировал электрический ток с помощью магнитных эффектов. Так постепенно была открыта целая совокупность новых физических эффектов. Естественнонаучный горизонт расширялся с неслыханной быстротой.
Решающий шаг был сделан в 1847 г. Джоулем: он понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, протеканием химических реакций, а также биологическими объектами, носят характер «превращения». Идея превращения, опирающаяся на постулат о количественном сохранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движении. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, превращается в кинетическую, и наоборот. Джоуль определил общий эквивалент для физико-химических трансформаций, что позволило измерить сохраняющуюся величину. Впоследствии6 эта величина стала известна как «энергия». Джоуль установил первую эквивалентность, измерив механическую работу, которую необходимо затратить, чтобы поднять температуру данного количества воды на один градус. Так среди ошеломляющего потока новых разнообразных открытий был обнаружен унифицирующий элемент. Сохранение энергии при самых различных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путеводным принципом в исследовании новых процессов.
Неудивительно, что закон сохранения энергии был столь важен для физиков XIX в. Для многих из них он был воплощением единства природы. Это убеждение отчетливо звучит в высказывании Джоуля, выдержанном в традициях английской науки:
«Явления природы, механические, химические или биологические, состоят почти полностью из непрерывного превращения тяготения на расстоянии живой силы [кинетической энергии] в тепло, и наоборот. Тем самым поддерживается порядок во Вселенной: ничто не расстрачивается, ничто не утрачивается, а весь механизм при всей своей сложности работает слаженно и гармонично. И хотя, как в ужасном видении пророка Иезекииля, «казалось, будто колесо находилось в колесе» (Иезек, 1, 16) и все кажется сложным и вовлеченным в хитросплетения почти неисчерпаемого многообразия причин, следствий, превращений и выстраивания в определенной последовательности, тем не менее сохраняется идеальнейший порядок и все бытие послушно непререкаемой воле бога»7.
Еще более показателен случай немецких ученых Гельмгольца, Майера и Либиха. Все трое принадлежали к культурной традиции, которая отвергла бы взгляды Джоуля с позиций чисто позитивистской практики. В ту пору, когда они совершали свои открытия, ни один из них не был, строго говоря, физиком. Однако их всех интересовала физиология дыхания. Со времен Лавуазье это был своего рода эталон проблемы, в которой функционирование живого существа поддавалось описанию в точных физических и химических терминах, таких, как расход кислорода при горении, выделение тепла и мускульная работа. Эта проблема привлекала физиологов и химиков, чуждых чисто умозрительным построениям романтиков и жаждущих внести свой вклад в экспериментальную науку. Обстоятельства, при которых эти трое ученых пришли к заключению, что дыхание, да и природа в целом подчиняются универсальной «эквивалентности», лежащей в основе всех, больших и малых, явлений, позволяют утверждать, что именно немецкой философской традиции открыватели закона сохранения энергии обязаны своей концепцией, совершенно чуждой позитивисткой позиции: все трое без малейших колебаний пришли к выводу о всеобщем характере закона сохранения энергии, о том, что он пронизывает всю природу до мельчайших кирпичиков мироздания.
Особенно замечательным нам представляется случай Майера8. Работая в молодые годы врачом в голландских колониях на Яве, Майер обратил внимание на ярко красный цвет венозной крови у одного из своих пациентов. Это наблюдение привело его к заключению, что жителям жаркого тропического климата требуется меньше кислорода для поддержания нормальной температуры тела, чем в средних широтах, чем и объясняется яркий цвет их крови. Майер продолжил свои исследования и установил баланс между потреблением кислорода, являющимся источником энергии, и потреблением энергии, затрачиваемой на поддержание постоянной температуры тела, несмотря на тепловые потери и мышечную работу. Это была счастливая догадка, так как причиной яркого цвета крови пациента вполне могла быть, например, его «лень». Но Майер не остановился на достигнутом и, продолжив свои рассуждения, пришел к заключению, что баланс потребления кислорода и тепловых потерь — не более чем частное проявление существования какой-то неразрушимой «силы», лежащей в основе всех явлений.
Тенденция видеть в явлениях природы продукты лежащей в их основе реальности, сохраняющей постоянство при всех трансформациях, поразительно напоминает идеи Канта. Влияние Канта отчетливо ощущается и в другой идее, которую разделяли некоторые физиологи: в необходимости различать витализм как философскую спекуляцию и витализм как проблему научной методологии. Для тех физиологов, кто придерживался этой точки зрения, даже если бы существовала «жизненная» сила, лежащая в основе функционирования живых организмов, объект физиологии по своей природе оставался бы чисто физико-химическим. По двум названным выше причинам кантианство, узаконившее ту систематическую форму, которую приняла математическая физика в XVIII в., по праву может считаться одним из источников обновления физики в XIX в.9
Гельмгольц совершенно открыто признавал влияние Канта. Для Гельмгольца закон сохранения энергии был лишь воплощением в физике общего априорного требования, на котором зиждется вся наука, а именно постулата о фундаментальной инвариантности, которая кроется за всеми трансформациями, происходящими в природе:
«Цель указанных* наук заключается в отыскании законов, благодаря которым отдельные процессы в природе могут быть сведены к общим правилам и могут быть снова выведены из этих последних. Эти правила, к которым относятся, например, законы преломления или отражения света, закон Мариотта и Гей-Люссака для объема газов, являются, очевидно, не чем иным, как общим видовым понятием, которым охватываются все относящиеся сюда явления. Разыскание подобных законов является делом экспериментальной части наших наук; теоретическая часть старается в то же время определить неизвестные причины явлений из их видимых действий; она стремится понять их из закона причинности.
Мы вынуждены были так поступать и имеем на это право благодаря основному закону, по которому всякое изменение в природе должно иметь достаточное основание. Ближайшие причины, которым мы подчиняем естественные явления, могут быть в свою очередь неизменными или изменяющимися. В последнем случае тот же закон принуждает нас искать другие причины этого изменения и так далее до тех пор, пока мы не доходим до последних причин, которые действуют по неизменному закону и которые, следовательно, в каждое время при одинаковых условиях вызывают одно и то же действие. Конечной целью теоретического естествознания и является, таким образом, разыскание последних неизменных причин явлений в природе»10.
С появлением закона сохранения энергии начала формироваться идея о новом золотом веке физики, который должен был бы в конечном счете привести к наиболее широкому обобщению механики.
Открытие закона сохранения энергии имело далеко идущие культурные последствия. В их число входило и представление об обществе и человеке как о машинах, преобразующих энергию. Но превращение энергии не может быть конечным звеном цепи. Оно отражает пассивные и управляемые аспекты природы, но за ними должен находиться еще один более «активный» уровень. Ницше был одним из тех, кто уловил эхо актов творения и разрушения, выходящих за рамки одного лишь сохранения или превращения. Результаты, являющиеся различиями, могут порождать только различие, например разность температур или уровней потенциальной энергии11. Превращение энергии есть всего лишь уничтожение одного различия с одновременным созданием другого. Сила природы оказывается, таким образом, скрытой использованием эквивалентностей. Но существует другой аспект природы, имеющий непосредственное отношение к котлам паровых двигателей, химическим превращениям, жизни и смерти и выходящий за рамки эквивалентностей и сохранения энергии12. Говоря об этом аспекте, мы подходим к самому важному вкладу термодинамики в естествознание — понятие необратимости.
3. Тепловые машины и стрела времени
Сравнивая механические устройства с тепловыми машинами, например с паровозными котлами с их раскаленными докрасна топками, мы наглядно видим брешь, отделяющую классический век от технологии XIX в. Тем не менее физики поначалу думали, что эту брешь можно игнорировать, что тепловые машины удастся описывать так же, как некогда механические, пренебрегая тем решающим фактом, что использованное тепловой машиной горючее исчезает навсегда. Но вскоре подобному благодушию пришел конец. Для классической механики символом природы были часы, для индустриального века таким символом стал резервуар энергии, запас которого всегда грозил иссякнуть. Мир горит как огромная печь; энергия, хотя она и сохраняется, непрерывно рассеивается.
Первоначальную формулировку второго начала термодинамики, которая позволила впервые количественно выразить необратимость, предложил в 1824 г. Сади Карно — до того, как Майер (1842) и Гельмгольц (1847) сформулировали в общем виде закон сохранения энергии. Карно, продолжая работу своего отца Лазара Карно, автора весьма авторитетного трактата по теории машин (механических устройств), занимался анализом работы тепловой машины.
При описании механических устройств движение предполагается заданным. На современном языке это соответствует сохранению энергии и импульса. Движение лишь претерпевает превращения и передается другим телам. Но аналогия между механическим устройством и тепловой машиной была естественной для Сади Карно, поскольку он, как и большинство ученых его времени, предполагал, что тепло сохраняется подобно тому, как сохраняется механическая энергия.
Вода, падающая с одного уровня на другой, способна приводить в движение мельничное колесо. Аналогичным образом Сади Карно предположил, что существуют два источника, один из которых отдает тепло системе двигателя, а второй, находящийся при другой температуре, поглощает тепло, отданное первым. Таким образом, работу тепловой машины Сади Карно представил как движение тепла через машину между двумя источниками, находящимися при различных температурах. Иначс говоря, работу, производимую машиной, по Карно, совершает движущая сила огня.
Сади Карно поставил перед собой те же вопросы, какие задавал его отец13. У какой машины коэффициент полезного действия будет наиболее высоким? Каковы источники потерь? При каких процессах тепло распространяется, не производя работы? Лазар Карно пришел к заключению, что для достижения наивысшего коэффициента полезного действия при постройке и эксплуатации механического устройства следует сводить до минимума удары, трение и резкие, скачкообразные изменения скорости, т. е., короче говоря, все, что происходит при внезапном соприкосновении тел, движущихся с различными скоростями. Рассуждая так, Лазар Карно лишь следовал физике своего времени, считавшей, что только непрерывные изменения консервативны, а все скачкообразные изменения движения сопряжены с необратимой потерей «живой силы». Заключение Сади Карно было аналогичным: идеальная тепловая машина вместо того, чтобы избегать любых контактов между телами, движущимися с различными скоростями, должна избегать любых контактов между телами, имеющими различные температуры.
Рис. 2. Цикл Карно на диаграмме давление-объем (идеальная тепловая машина, функционирующая между двумя источниками: нагревателем при температуре ТH и холодильником при температуре TL, TH>TL.). При переходе из состояния a в состояние b происходит изотермический процесс: система, температура которой поддерживается равной температуре нагревателя Тн, поглощает тепло и расширяется. При переходе из состояния b в состояние с происходит адиабатический процесс: теплоизолированная система продолжает расширяться и температура понижается с ТH до TL. На этих двух стадиях система производит механическую работу. При переходе из состояния с в состояние d происходит еще один изотермический процесс: система, температура которой поддерживается равной температуре холодильника TL, сжимается и выделяет тепло. При переходе из состояния d в а происходит еще один адиабатический пропесс: теплоизолированная система сжимается и температура ее повышается с TL до ТH.
Следовательно, рассуждал Сади Карио, цикл необходимо строить так, чтобы ни одно изменение температуры не было обусловлено прямым потоком тепла между двумя телами, находящимися при различных температурах. Поскольку такие потоки не производили бы никакой механической работы, они приводили бы только к снижению кпд.
Идеальный цикл Kарно представляет собой, таким образом, весьма хитроумное приспособление, позволяющее достигать парадоксального результата: переноса тепла между двумя источниками, находящимися при различных температурах, без прямого контакта между телами с различной температурой. Цикл Карно подразделяется на четыре стадии. На каждой из двух изотермических стадий система находится в контакте с одним из двух тепловых источников, а ее температура поддерживается равной температуре этого источника. Находясь в контакте с горячим источником (нагревателем), система поглощает тепло и расширяется. Находясь в контакте с холодным источником (холодильником), система теряет тепло и сжимается. Две изотермические стадии связаны между собой двумя стадиями, на которых система изолирована от источников, т. е. тепло не поступает в систему и не покидает ее, но температура системы изменяется в результате соответственно расширения и сжатия. Объем продолжает изменяться до тех нор, пока система не перейдет от температуры одного источника к температуре другого.
Весьма замечательно, что в приведенном выше описании идеальной тепловой машины ни разу не упоминаются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сгорает уголь. Предложенная Сади Карно модель отражает лишь конечный результат горения: возможность поддержания разности температур между двумя источниками.
В 1850 г. Клаузиус дал новое описание цикла Карно — с точки зрения закона сохранения энергии. Он обнаружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно формула для теоретического кпд отражают проблему, специфическую для тепловых машин: необходимость процесса, компенсирующего превращение (в случае цикла Карно — охлаждение в контакте с источником, находящимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса, выражающие превращения энергии, оказались теперь объединенными новыми отношениями эквивалентности между воздействиями двух процессов — потока тепла между источниками и превращения тепла в работу — на состояние системы. Новая наука — термодинамика, — установившая связь между механическими и тепловыми эффектами, обрела существование.
Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, неограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карно, мы получаем, с одной стороны, произведенную механическую работу, а с другой стороны, перенос тепла, причем то и другое связано между собой отношением эквивалентности. Эта эквивалентность действует в обоих отношениях. Обратным ходом та же машина может восстановить начальную разность температур, затратив произведенную работу. Невозможно построить тепловую машину только с одним источником тепла.
Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального значения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффективности тепловых машин.
Но с XVIII в. статус идеализации изменился. Опираясь на закон сохранения энергии, новое естествознание стало претендовать на описание не только идеализаций, но и самой природы, включая «потери». Возникла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько снижают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термодинамики.
4. От технологии к космологии
Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кроме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.
На теплопроводность, математическую теорию которой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карно, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Сочетание этих двух открытий привело Томсона к формулировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универсальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.
Мир Лапласа был идеальным вечным двигателем. Начиная с Томсона, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствии необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсопа описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации. Соответственно уменьшились различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти». В соответствии с законом Фурье при достижении миром конечного состояния исчезнут всякие различия в температуре, способные производить механический эффект.
Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке второго начала термодинамики он использовал научную терминологию середины XIX в.: «сохранение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в которой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социологии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в большей мере напоминает о древних мифологических и религиозных архетипах, чем о все нарастающем усложнении и многообразии, описываемыми биологией и социальными науками. Возвращение этих древних тем можно рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансформация технологического способа взаимодействия с природой, постоянно нарастающий темп изменения, с которым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на научные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обусловлена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одновременного использования термодинамики и теории относительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу… Одна из последних книг на эту тему рисует такую картину:
«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватывающая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может даже кануть в небытие в результате всеобщего гравитационного коллапса»14.
Другие более оптимистичны. В превосходной научно-популярной статье об энергии Вселенной Фримен Дайсон пишет следующее:
«Вполне возможно, однако, что жизнь играет более важную роль, чем принято думать. Возможно, что жизни суждено выстоять против всех невзгод, преобразуя мир для собственных целей. И структура неодушевленного мира может оказаться не столь уж далекой от потенциальностей жизни и разума, как имеют обыкновение полагать ученые XX в.»15
Несмотря на существенный прогресс, достигнутый Хокингом и другими исследователями [Наиболее важные результаты были получены Е. М. Лифшицем, Б. Боннором, Дж. Силком, А. Ю. Дж. Пиблсом, Я. Б. Зельдовичем, А. Г. Дорошкевичем, И. Д. Новиковым, Р. А. Сюняевым, С. Ф. Шандариным и др. С современным состоянием теории крупномасштабной структуры Вселенной читатель может познакомиться по следующим работам: сб. Крупномасштабная структура Вселенной. М., 1981; Зельдович Я. Б. Избранные труды. Частицы, ядра Вселенная. М., 1985, особенно с. 280-283.-Прим. перев.], наше знание крупномасштабных преобразований во Вселенной все еще остается неадекватным.
5. Рождение энтропии
В 1865 г. настал черед совершить скачок от технологии к космологии для Клаузиуса. Сначала он лишь переформулировал свои более ранние выводы, но при этом ввел новое понятие — энтропия. Первоначально Клаузиус намеревался четко разграничить понятия сохранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энергия может сохраняться даже в том случае, если преобразование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, или к теплопроводности, описанной Фурье.
Мы уже знакомы с таким понятием, как «энергия». Она является функцией состояния системы, т. е. функцией, зависящей только от значений параметров (давления, объема, температуры), которые однозначно определяют состояние[16]. Но нам необходимо выйти за рамки закона сохранения энергии и найти способ, позволяющий выразить различие между «полезными» обменами энергией в цикле Карно и «диссипированной» энергией, теряемой необратимо.
Именно такую возможность и предоставляет введенная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой S.
Клаузиус, по-видимому, намеревался лишь записать в новом виде очевидное требование, состоящее в том, что в конце цикла тепловая машина должна возвращаться в начальное состояние. В первом определении энтропии основной акцент делался на сохранении: в конце каждого цикла, идеального или с потерями, функция состояния системы — энтропия — возвращается к своему начальному значению. Но параллель между энтропией и энергией заканчивается, стоит лишь нам отказаться от принятых идеализаций17
Рассмотрим приращение энтропии dS за короткий интервал времени dt. В случае идеальной и реальной тепловой машины ситуация совершенно различная. В первом случае dS можно полностью выразить через теплообмен между машиной и окружающей средой. Можно поставить специальные опыты, в которых система будет отдавать тепло вместо того, чтобы поглощать его. Соответствующее приращение энтропии при этом лишь изменит знак. Такую составляющую полного приращения энтропии мы обозначим deS. Она обратима в том смысле, что может быть и положительной, и отрицательной. В реальных машинах мы сталкиваемся с совершенно иной ситуацией. В них, ломимо обратимого теплообмена, происходят необратимые процессы: тепловые потери, трение и т. д. Они приводят к увеличению энтропии, или производству энтропии, внутри системы. Увеличение энтропии, которое мы обозначим diS, не может изменять знак при обращении теплообмена с внешним миром. Как все необратимые процессы (например, теплопроводность), производство энтропии всегда происходит в одном и том же направлении. Иначе говоря, величина diS может быть только положительной или обращаться в нуль в отсутствие необратимых процессов. Заметим, что положительность diS-вопрос соглашения: с тем же успехом мы могли бы считать величину diS отрицательной. Важно другое: изменение энтропии монотонно; производство энтропии не может изменять знак во времени.
Выбор обозначений deS и diS призван напоминать читателю, что первый член относится к обмену энергией (по-английски exchange — e) с внешним миром, а второй — к необратимым процессам внутри (по английски inside — i) системы. Таким образом, полное приращение энтропии dS представимо в виде суммы двух членов deS и diS, имеющих различный физический смысл18.
Чтобы понять одну специфическую особенность такого разложения приращения энтропии в сумму двух членов, полезно применить наши рассуждения к энергии. Обозначим энергию через Е, и пусть dE — приращение энергии за короткий интервал времени dt. Разумеется, ничто не мешает нам представить dE в виде суммы члена deE, описывающего обмен энергией с внешним миром, и члена diE, связанного с «внутренним производством» энергии. Но закон сохранения энергии утверждает, что энергия никогда не «производится», а лишь переносится с одного места на другое. Следовательно, полное приращение энергии dE сводится к deE. С другой стороны, если мы возьмем какую-нибудь несохраняющуюся величину, например количество молекул водорода в некотором сосуде, то такая величина может изменяться и в результате добавления водорода в сосуд, и вследствие химических реакций, протекающих в сосуде. Знак «производства» несохраняющейся величины заранее не определен. В зависимости от обстоятельств мы можем и производить молекулы водорода, и разрушать их, «отдавая» атомы водорода другим химическим соединениям. Специфическая особенность второго начала состоит в том, что член diS, описывающий производство энтропии, всегда положителен. Производство энтропии отражает необратимые изменения, происходящие внутри системы.
Клаузиусу удалось найти количественное выражение для потока энтропии deS через тепло, поглощаемое (или отдаваемое) системой. В мире, где безраздельно господствуют понятия обратимости и сохранения, вывод такой зависимости имел первостепенное значение. Что же касается необратимых процессов, участвующих в производстве энтропии, то Клаузиус смог установить лишь неравенство diS/dt>0. Но и оно было важным шагом вперед, поскольку позволяло проводить различие между потоком энтропии и производством энтропии не только для цикла Kapно, но и для других термодинамических систем. Для изолированной системы, которая ничем не обменивается с окружающей средой, поток энтропии, по определению, равен нулю. Остается лишь член, описывающий производство энтропии, а энтропия системы может только возрастать или оставаться постоянной. В этом случае сам собой отпадает вопрос о необратимых изменениях, рассматриваемых как приближение к обратимым изменениям: возрастающая энтропия соответствует самопроизвольной, эволюции системы. Энтропия становится, таким образом, «показателем эволюции», или, по меткому выражению Эддингтона, «стрелой времени». Для изолированных систем будущее всегда расположено в направлении возрастания энтропии.
Какая система может быть изолирована лучше, чем наша Вселенная? Эта идея легла в основу космологической формулировки первого и второго начал термодинамики, предложенной Клаузнусом в 1865 г.:
Die Energie der Welt ist konstant.
Die Entropie der Welt strebt einem Maximum zu [19].
[Энергия мира постоянна. Энтропия мира стремится к максимуму (нем.). - Прим. перев.]
Утверждение о том, что энтропия изолированной системы возрастает до максимального значения, выходит за рамки той технологической проблемы, решение которой привело к созданию термодинамики. Возрастающая энтропия перестает быть синонимом потерь. Теперь она относится к естественным процессам внутри системы. Под влиянием этих процессов система переходит в термодинамическое «равновесие», соответствующее состоянию с максимумом энтропии.
В главе 1 мы отмечали элемент некоторой неожиданности в открытии Ньютоном универсальных законов динамики. Когда Сади Карно сформулировал свои законы для идеальных тепловых машин, он не мог даже вообразить, что его работа приведет к концептуальной революции в физике.
Обратимые преобразования принадлежат классической науке в том смысле, что определяют возможность воздействия на систему, управления системой. Динамическим объектом можно управлять, варьируя начальные условия. Аналогичным образом термодинамическим объектом, определяемым в терминах обратимых преобразований, можно управлять, изменяя граничные условия: любая система, находящаяся в состоянии термодинамического равновесия, при постепенном изменении температуры, объема или давления проходит через серию равновесных состояний и при любом обращении производимых над ней манипуляций возвращается в начальное состояние. Обратимый характер таких изменений и управление объектом через граничные условия- процессы взаимозависимые. С этой точки зрения необратимость «отрицательна»: она проявляется в форме неуправляемых изменений, происходящих в тех случаях, когда система выходит из-под контроля. Наоборот, необратимые процессы можно рассматривать как последние остатки самопроизвольной внутренней активности, проявляемой природой, когда человек с помощью экспериментальных устройств пытается обуздать ее.
Таким образом, «отрицательное» свойство — диссипация — показывает, что в отличие от динамических объектов термодинамические объекты управляемы не до конца. Иногда они «выходят из повиновения», претерпевая самопроизвольное изменение.
Для термодинамической системы все изменения не эквивалентны. В этом и состоит физический смысл разложения dS=deS+diS. Самопроизвольное изменение diS, направленное к равновесию, отличается от изменения deS, определяемого и управляемого варьированием граничных условий (например, температуры окружающей среды). В случае изолированной системы равновесие выступает в роли притягивающего множества, или «аттрактора», неравновесных состояний. Следовательно, наше первоначальное утверждение допускает обобщение: эволюция к состоянию-аттрактору отличается от всех других изменений, в особенности от изменений, обусловленных варьированием граничных условий.
Макс Планк часто подчеркивал различие между двумя типами изменений, встречающихся в природе. Природа, писал Планк, по-видимому, отдает «предпочтение» определенным состояниям. Необратимое увеличение энтропии diS/dt описывает приближение системы к состоянию, неодолимо «притягивающему» ее, предпочитаемому ей перед другими, — состоянию, из которого система не выйдет по «доброй воле».
«Согласно этому способу выражения, в природе невозможны те процессы, при которых природа дает меньшее предпочтение конечному состоянию, чем начальному. Предельный случай представляет обратимые процессы; в них природа испытывает одинаковое предпочтение как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях»20.
Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия определяют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоянию одного и того же типа. К моменту достижения равновесия система забывает свои начальные условия, т. е. способ, которым она была приготовлена.
Удельная теплоемкость или сжимаемость системы, находящейся в состоянии термодинамического равновесия, являются свойствами, не зависящими от того, как была построена система. Это счастливое обстоятельство значительно упрощает исследование физических состояний вещества. Действительно, сложные системы состоят из огромного числа частиц*. С точки зрения динамики воспроизвести любое состояние такой системы невозможно из-за бесконечного разнообразия состояний, в которых она может находиться.
Мы сталкиваемся, таким образом, с двумя принципиально различными описаниями: динамикой, применимой к миру движения, и термодинамикой, наукой о сложных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии. Столь резкая противоположность двух описаний немедленно порождает вопрос о том, какая взаимосвязь существует между ними. Эта проблема дискутируется в науке с тех пор, как были сформулированы начала термодинамики.
6. Принцип порядка Больцмана
Второе начало термодинамики содержит два принципиально важных элемента: 1) «негативный», выражающий запрет на некоторые процессы, т. е. их невозможность (тепло может распространяться от горячего источника к холодному, но не от холодильника к нагревателю); 2) «положительный», конструктивный. Второй элемент является следствием первого: запрет на некоторые процессы позволяет нам ввести функцию (энтропию), монотонно возрастающую для изолированных систем. Энтропия ведет себя КАК аттрактор для изолированных систем.
Каким образом положения термодинамики можно было бы совместить с динамикой? В конце XIX в. большинство ученых, по всей видимости, склонны были думать, что термодинамика несовместима с динамикой. Принципы термодинамики были новыми законами, закладывающими фундамент новой науки, не сводимой к традиционной физике. Качественное многообразие энергии и присущую ей тенденцию к диссипации приходилось принимать как новые аксиомы. Таким был аргумент, выдвигаемый «энергетистами» в противовес «атомистам», упорно не желавшим отказаться от выполнения программы, в которой они усматривали высшую миссию физики — сведение сложности явлений природы к простоте поведения элементарных структурных единиц, выражаемого законами движения.
Проблемы перехода от микроскопического уровня к макроскопическому оказались необычайно плодотворными для физики в целом. Первым вызов принял Больцман. Тонкая физическая интуиция подсказывала ему, что необходимо выработать какие-то новые понятия, которые позволили бы обобщить физику траекторий, распространив ее на системы, описываемые термодинамикой. Следуя по стопам Максвелла, Больцман принялся искать концептуальные новации в теории вероятности.
В самой идее о том, что вероятность могла бы играть определенную роль в описании сложных явлений, ничего удивительного не было: у Максвелла она, по-видимому, зародилась под влиянием трудов Кетле, который первым ввел в социологию понятие «среднего» человека. Новацией было введение вероятности в физику не как средства аппроксимации, а как объясняющего принципа, использование ее для демонстрации нового типа поведения систем, состоящих из огромного числа частиц: наличие большой популяции позволяло применять правила теории вероятностей.
Рассмотрим один простой пример применения понятия вероятности в физике. Предположим, что ансамбль из N частиц находится в ящике, разделенном на два равных отделения. Требуется найти вероятность различных распределений частиц между отделениями, т. е. найти вероятность обнаружить N1 частиц в первом отделении (и N2=N-N1 частиц во втором).
Комбинаторный анализ позволяет легко сосчитать число способов, которыми получается каждое из различных распределений N частиц. Например, при N=8 поместить восемь частиц в одну половину ящика можно лишь одним способом. Но если предположить, как это делается в классической физике, что все частицы различимы, то поместить одну частицу в одном отделении, а остальные семь — в другом отделении ящика можно восемью различными способами. Распределить восемь частиц поровну между двумя половинами ящика можно 8!/4!4!=70 различными способами (где n! = 1 2 3… (п-1) n). Аналогичным образом при любом N можно указать число Р способов, которыми можно получить любое заданное распределение (N1, N2), или, как принято говорить в физике, комплексов. Оно определяется выражением P=N!/N1N2!.
Чем больше число комплексов в любом ансамбле частиц, тем меньше отличаются между собой числа N1 и N2. Число комплексов максимально, когда частицы поровну распределены между двумя отделениями ящика. Кроме того, чем больше N, тем больше отличаются между собой числа комплексов, соответствующие различным распределениям. При значениях N порядка 1023, достижимых в макроскопических системах, подавляющее большинство распределений соответствует случаю N1=N2=N/2. Следовательно, для систем, состоящих из большого числа частиц, все состояния, отличающиеся от состояния, которое соответствует равномерному распределению, маловероятны.
Больцман первым понял, что необратимое возрастание энтропии можно было бы рассматривать как проявление все увеличивающегося молекулярного хаоса, постепенного забывания любой начальной асимметрии, поскольку асимметрия приводит к уменьшению числа комплексов по сравнению с состоянием, отвечающим максимальному значению Р. Придя к такому выводу, Больцман решил отождествить энтропию S с числом комплексов: каждое макроскопическое состояние энтропия характеризует числом способов, которым оно может быть достигнуто. Знаменитое соотношение Больцмана S=klnP [Логарифм в этом выражении свидетельствует о том, что энтропия - величина аддитивная (S1+2=S1+S2), тогда как число комплексов Р мультипликативно (P1+2=P1 P2).] выражает ту же идею количественно. Коэффициент пропорциональности k в этой форме — универсальная постоянная, известная под названием «постоянная Больцмана».
Результаты Больцмана означают, что необратимое термодинамическое изменение есть изменение в сторону более вероятных состояний и что состояние-аттрактор есть макроскопическое состояние, соответствующее максимуму вероятности. Такие выводы уводят нас далеко за пределы физики Ньютона. Впервые интерпретация физического понятия была дана в терминах вероятности. Полезность больцмановской интерпретации непосредственно очевидна. Вероятность позволяет адекватно объяснить, почему система забывает любую начальную асимметрию, детали любого конкретного распределения (например, какие частицы были первоначально сосредоточены в данной подобласти системы, или распределение скоростей, возникшее при смешении двух газов с различными температурами). Забывание начальных условий возможно потому, что, как бы ни эволюционировала система, она в конечном счете перейдет в одно из микроскопических состояний, соответствующих макроскопическому состоянию хаоса и максимальной симметрии, поскольку именно такие макроскопические состояния составляют подавляющее большинство всех возможных микроскопических состояний. Коль скоро наиболее вероятное состояние достигнуто, система отклоняется от него лишь на небольшие расстояния и на короткие промежутки времени. Иначе говоря, система лишь флуктуирует около состояния-аттрактора.
Из принципа порядка Больцмапа следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются. Каково бы ни было начальное распределение в нашем первом примере, эволюция системы в конечном счете приведет к равномерному распределению N1=N2. По достижении этого состояния необратимая макроскопическая эволюция системы завершается. Разумеется, частицы будут по-прежнему переходить из одной половины ящика в другую, но в среднем в любой момент времени число частиц, движущихся в одном направлении, будет совпадать с числом частиц, движущихся в противоположном направлении. В результате движение частиц способно вызывать лишь малые, короткоживущие флуктуации вблизи равновесного состояния N1=N2. Таким образом, вероятностная интерпретация Больцмана позволяет понять специфическую особенность аттрактора, изучаемого равновесной термодинамикой.
На этом история не заканчивается, и всю третью часть нашей книги мы посвятим более подробному обсуждению затронутого круга проблем, а пока ограничимся несколькими замечаниями. В классической (и, как мы увидим в дальнейшем, квантовой) механике все определяется в терминах начальных состояний и законов движения. Каким же образом в описание природы входит вероятность? Обычно, отвечая на этот вопрос, ссылаются на то, что мы не знаем с абсолютной точностью динамическое состояние системы. Это — субъективистская интерпретация энтропии. Такая интерпретация была бы приемлема, если бы необратимые процессы мы рассматривали лишь как досадные помехи, соответствующие трению, или, более общо, как потери при функционировании тепловых машин. Но ныне ситуация изменилась. Как мы увидим, необратимым процессам отводится важнейшая конструктивная роль: так, без них была бы невозможна жизнь. Все это делает субъективистскую интерпретацию весьма спорной. В какой мере допустимо считать, что мы сами являемся результатом неполноты собственного знания, следствием того, что нашему наблюдению доступны лишь макроскопические состояния?
И в термодинамике, и в ее вероятностной интерпретации возникает асимметрия во времени: энтропия возрастает в направлении будущего, но не прошлого. Если мы рассматриваем динамические уравнения, инвариантные относительно обращения времени, то такая асимметрия представляется невозможной. Как мы увидим в дальнейшем, второе начало термодинамики представляет собой принцип отбора, совместимый с динамикой, но не выводимый из нее. Второе начало ограничивает возможные начальные условия, доступные для динамической системы. Следовательно, второе начало термодинамики знаменует радикальный отход от механистического мира классической или квантовой механики. Но вернемся к работам Больцмана.
До сих пор мы рассматривали изолированные системы, в которых число частиц и полная энергия заданы граничными условиями. Но объяснение Больцмана допускает обобщение на открытые системы, взаимодействующие с окружающей средой. В замкнутой системе, определяемой граничными условиями так, что ее температура Т поддерживается постоянной за счет теплообмена с окружающей средой, равновесие соответствует не максимуму энтропии, а минимуму аналогичной функции, получившей название свободной энергии: F=E-TS, где Е — энергия системы, Т — ее температура по так называемой шкале Кельвина (точка замерзания воды соответствует 273 °К, а точка кипения 373 °К).
Соотношение F=E-TS означает, что равновесие есть результат конкуренции между энергией и энтропией, а температура выступает в роли множителя, определяющего относительный вес этих двух факторов. При низких температурах перевес на стороне энергии, и мы наблюдаем образование таких упорядоченных (с малой энтропией) и низкоэнергетических структур, как кристаллы. Каждая молекула внутри таких структур взаимодействует со своими соседями, и их кинетическая энергия мала по сравнению с потенциальной энергией, обусловленной взаимодействиями между соседними молекулами. Каждая молекула как бы скована взаимодействием со своими соседями. При высоких температурах доминирует энтропия и в системе устанавливается молекулярный хаос. Важность относительного движения возрастает, и регулярность в строении кристалла нарушается: по мере увеличения температуры вещество переходит сначала в жидкое, а затем в газообразное состояние.
Энтропия S изолированной системы и свободная энергия системы при заданной температуре являются примерами так называемых термодинамических потенциалов. Экстремумы (т. е. максимумы и минимумы) термодинамических потенциалов, в том числе S и F, задают состояния-аттракторы, к которым самопроизвольно стремится система, если ее граничные условия соответствуют определениям потенциалов.
Принцип порядка Больцмана может быть использован и при исследовании сосуществования структур (например, жидкой и твердой фаз) или равновесия между кристаллизовавшимся продуктом и тем же продуктом в растворе. Не следует, однако, забывать о том, что равновесные структуры определены на молекулярном уровне. Взаимодействие между молекулами на расстоянии порядка 10-8 см, т. е. порядка диаметра атомов в молекулах, делает устойчивой структуру кристаллов и наделяет их макроскопическими свойствами. С другой стороны, размеры кристалла не являются внутренним свойством структуры. Они зависят от того, какое количество вещества находится в кристаллической фазе при равновесии.
7. Карно и Дарвин
Равновесная термодинамика позволяет удовлетворительно объяснить огромное число физико-химических явлений. Тем не менее уместно спросить, охватывает ли понятие равновесной структуры все те различные структуры, с которыми мы сталкиваемся в природе. Ясно, что ответ на подобный вопрос может быть только отрицательным.
Равновесные структуры можно рассматривать как результат статистической компенсации активности микроскопических элементов (молекул, атомов). На глобальном уровне равновесные структуры, по определению, инертны. По той же причине они «бессмертны»: коль скоро равновесная структура образовалась, ее можно изолировать и поддерживать бесконечно долго без дальнейшего взаимодействия с окружающей средой. Но при изучении биологической клетки или города мы сталкиваемся с совершенно другой ситуацией: эти системы не только открыты, но и существуют только потому, что они открыты. Их питают потоки вещества и энергии, которые поступают из внешнего мира. Мы можем изолировать кристалл, но если города и клетки отрезать от окружающей среды, они погибнут. Последние являются неотъемлемой составной частью того мира, из которого они черпают необходимые для себя «питательные вещества», и их невозможно изолировать от потоков, которые они безостановочно перерабатывают.
Но не только живая природа глубоко чужда моделям термодинамического равновесия. Обмен веществом и энергией с окружающей средой происходит также во многих гидродинамических явлениях и в химических реакциях.
Трудно понять, каким образом принцип порядка Больцмана может быть применен во всех таких случаях. То, что с течением времени система становится более однородной, в терминах комплексов интерпретируется вполне естественно: в состоянии однородности, когда забыты «различия», созданные начальными условиями, число комплексов максимально. Но решительно невозможно понять, оставаясь в рамках такого рода представлений, спонтанное возникновение конвекции. Конвективное течение требует когерентности, согласованного поведения огромного числа молекул. Это — противоположность хаоса, привилегированное состояние, которому может соответствовать лишь сравнительно небольшое число комплексов. По терминологии Больцмана, конвективное течение — пример «невероятного» состояния. Но если конвекцию надлежит считать «чудом», то что в таком случае говорить о жизни в ее многочисленных проявлениях и в высшей степеней специфических особенностях даже в случае простейших организмов?
Вопрос о том, в какой мере равновесные модели соответствуют действительности, допускает обращение. Чтобы возникло равновесие, систему необходимо «защитить», «заэкранировать» от потоков, образующих в своей совокупности природу. Система должна быть «запаяна» в консервную банку или помещена в стеклянный сосуд, как гомункулус в гётевском «Фаусте», обращающийся к создавшему его алхимику со следующими словами: