• Уравнение гармонических колебаний
где х — смещение колеблющейся точки от положения равновесия;
t — время; А, ω, φ— соответственно амплитуда, угловая частота,
начальная фаза колебаний; — фаза колебаний в момент t.
• Угловая частота колебаний
, или ,
где ν и Т — частота и период колебаний.
• Скорость точки, совершающей гармонические колебания,
• Ускорение при гармоническом колебании
• Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле
где a 1 и А 2 — амплитуды составляющих колебаний; φ1 и φ2— их начальные фазы.
• Начальная фаза φ результирующего колебания может быть найдена из формулы
• Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по значению частотами ν1 и ν2,
• Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A1 и A2 и начальными фазами φ1 и φ2,
Если начальные фазы φ1 и φ2 составляющих колебаний одинаковы, то уравнение траектории принимает вид
т. е. точка движется по прямой.
В том случае, если разность фаз , уравнение
принимает вид
т. е. точка движется по эллипсу.
• Дифференциальное уравнение гармонических колебаний материальной точки
, или ,
где m — масса точки; k — коэффициент квазиупругой силы (k = т ω2).
• Полная энергия материальной точки, совершающей гармонические колебания,
• Период колебаний тела, подвешенного на пружине (пружинный маятник),
где m — масса тела; k — жесткость пружины. Формула справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (при малой массе пружины в сравнении с массой тела).
Период колебаний математического маятника
где l — длина маятника; g — ускорение свободного падения. Период колебаний физического маятника
где J — момент инерции колеблющегося тела относительно оси
колебаний; а — расстояние центра масс маятника от оси колебаний;
— приведенная длина физического маятника.
Приведенные формулы являются точными для случая бесконечно малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не более ошибка в значении периода не превышает 1 %.
Период крутильных колебаний тела, подвешенного на упругой нити,
где J — момент инерции тела относительно оси, совпадающей с упругой нитью; k — жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.
• Дифференциальное уравнение затухающих колебаний
, или ,
где r — коэффициент сопротивления; δ — коэффициент затухания: ; ω0— собственная угловая частота колебаний *
• Уравнение затухающих колебаний
где A (t) — амплитуда затухающих колебаний в момент t; ω — их угловая частота.
• Угловая частота затухающих колебаний
О Зависимость амплитуды затухающих колебаний от времени
I
где А 0 — амплитуда колебаний в момент t =0.
• Логарифмический декремент колебаний
где A (t) и A (t+T) — амплитуды двух последовательных колебаний, отстоящих по времени друг от друга на период.
• Дифференциальное уравнение вынужденных колебаний
, или
,
где — внешняя периодическая сила, действующая на
колеблющуюся материальную точку и вызывающая вынужденные
колебания; F0 — ее амплитудное значение;
• Амплитуда вынужденных колебаний
• Резонансная частота и резонансная амплитуда и
Примеры решения задач
Пример 1. Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если
x (0)= см и х ,(0)<0. Построить векторную диаграмму для мо-
мента t =0.
Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:
Отсюда найдем начальную фазу:
* В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0).
Подставим в это выражение заданные значения x (0) и А: φ=
= . Значению аргумента удовлетворяют
два значения угла:
Для того чтобы решить, какое из этих значений угла φ удовлет-
воряет еще и условию , найдем сначала :
Подставив в это выражение значение t =0 и поочередно значения
начальных фаз и , найдем
Так как всегда A >0 и ω>0, то условию удовлетворяет толь
ко первое значение начальной фазы.
Таким образом, искомая начальная
фаза
По найденному значению φ постро-
им векторную диаграмму (рис. 6.1).
Пример 2. Материальная точка
массой т =5 г совершает гармоничес-
кие колебания с частотой ν =0,5 Гц.
Амплитуда колебаний A =3 см. Оп-
ределить: 1) скорость υ точки в мо-
мент времени, когда смещение х=
= 1,5 см; 2) максимальную силу
Fmax, действующую на точку; 3)
Рис. 6.1 полную энергию Е колеблющейся точ
ки.
Решение. 1. Уравнение гармонического колебания имеет вид
(1)
а формулу скорости получим, взяв первую производную по времени от смещения:
(2)
Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квадрат, разделим первое на А2, второе на A2 ω 2 и сложим:
, или
Решив последнее уравнение относительно υ, найдем
Выполнив вычисления по этой формуле, получим
см/с.
Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус — когда направление скорости совпадает с отрицательным направлением оси х.
Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением
Повторив с этим уравнением такое же решение, получим тот же ответ.
2. Силу действующую на точку, найдем по второму закону Ньютона:
(3)
где а — ускорение точки, которое получим, взяв производную по времени от скорости:
, или
Подставив выражение ускорения в формулу (3), получим
Отсюда максимальное значение силы
Подставив в это уравнение значения величин π, ν, т и A, найдем
3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента времени.
Проще всего вычислить полную энергию в момент, когда кинетическая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии
Tmax:
(4)
Максимальную скорость определим из формулы (2), положив
: . Подставив выражение скорости в фор-
мулу (4), найдем
Подставив значения величин в эту формулу и произведя вычисления, получим
или мкДж.
Пример 3. На концах тонкого стержня длиной l = 1 м и массой m 3=400 г укреплены шарики малых размеров массами m 1=200 г и m 2=300г. Стержень колеблется около горизонтальной оси, перпен-
дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.
Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением
(1)
где J — момент инерции маятника относительно оси колебаний; т — его масса; lС — расстояние от центра масс маятника до оси.
Момент инерции данного маятника равен сумме моментов инерции шариков J 1 и J2 и стержня J 3:
(2)
Принимая шарики за материальные точки, выразим моменты их инерции:
Так как ось проходит через середину стержня, то
его момент инерции относительно этой оси J 3 =
= . Подставив полученные выражения J 1, J2 и
J 3 в формулу (2), найдем общий момент инерции фи-
зического маятника:
Произведя вычисления по этой формуле, найдем
Рис. 6.2 Масса маятника состоит из масс шариков и массы
стержня:
Расстояние lС центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое расстояние l равно координате центра масс маятника, т. е.
, или
Подставив значения величин m 1, m 2, m, l и произведя вычисления, найдем
см.
Произведя расчеты по формуле (1), получим период колебаний физического маятника:
Пример 4. Физический маятник представляет собой стержень
длиной l = 1 м и массой 3 т 1 с прикрепленным к одному из его концов
обручем диаметром и массой т 1. Горизонтальная ось Oz
маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.
Решение. Период колебаний физического маятника определяется по формуле
(1)
где J — момент инерции маятника относительно оси колебаний; т — его масса; l C — расстояние от центра масс маятника до оси колебаний.
Момент инерции маятника равен сумме моментов инерции стержня J 1 и обруча J 2:
(2).
Момент инерции стержня относительно оси,
перпендикулярной стержню и проходящей
через его центр масс, определяется по форму-
ле . В данном случае т= 3 т 1 и
Момент инерции обруча найдем, восполь-
зовавшись теоремой Штейнера ,
где J — момент инерции относительно про-
извольной оси; J0 — момент инерции отно-
сительно оси, проходящей через центр масс
параллельно заданной оси; а — расстояние
между указанными осями. Применив эту фор-
мулу к обручу, получим
Рис. 6.3 |
Подставив выражения J 1 и J 2 в формулу (2), найдем момент инерции маятника относительно оси вращения:
Расстояние lС от оси маятника до его центра масс равно
Подставив в формулу (1) выражения J, l с и массы маятника , найдем период его колебаний:
После вычисления по этой формуле получим T =2,17 с.
Пример 5. Складываются два колебания одинакового направле-
ния, выражаемых уравнениями ; х2=
= , где А 1 = 1 см, A 2=2 см, с, с, ω =
= . 1. Определить начальные фазы φ1 и φ 2 составляющих коле-
баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.
Решение. 1. Уравнение гармонического колебания имеет вид
(1)
Преобразуем уравнения, заданные в условии задачи, к такому же виду:
(2)
Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:
рад и рад.
2. Для определения амплитуды А результирующего колебания удобно воспользоваться векторной диаграммой, представленной на рис. 6.4. Согласно теореме косинусов, получим
(3)
где — разность фаз составляющих колебаний.
Так как , то, подставляя найденные
значения φ2 и φ1 получим рад.
Рис. 6.4 |
Подставим значения А 1 , А 2 и в формулу (3) и
произведем вычисления:
A= 2,65 см.
Тангенс начальной фазы φ результирующего колебания опреде-
лим непосредственно из рис. 6.4: , отку-
да начальная фаза
Подставим значения А 1, А 2, φ 1, φ 2 и произведем вычисления:
= рад.
Так как угловые частоты складываемых колебаний одинаковы,
то результирующее колебание будет иметь ту же частоту ω. Это
позволяет написать уравнение результирующего колебания в виде
, где A =2,65 см, , рад.
Пример 6. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых
(1).
(2)
где a 1 = 1 см, A 2=2 см, . Найти уравнение траектории точ-
ки. Построить траекторию с соблюдением масштаба и указать
направление движения точки.
Решение. Чтобы найти уравнение траектории точки, исключим время t из заданных уравнений (1) и (2). Для этого восполь-
зуемся формулой . В данном случае
, поэтому
Так как согласно формуле (1) , то уравнение траекто-
рии
(3)
Полученное выражение представляет собой уравнение параболы, ось которой совпадает с осью Ох. Из уравнений (1) и (2) следует, что смещение точки по осям координат ограничено и заключено в пределах от —1 до +1 см по оси Ох и от —2 до +2 см по оси Оу.
Для построения траектории найдем по уравнению (3) значения у, соответствующие ряду значений х, удовлетворяющих условию см, и составим таблицу:
X, СМ | -1 | —0,75 | —0,5 | +0,5 | + 1 | |
у, см | ±0,707 | ±1 | ±1,41 | ±1,73 | ±2 |
Начертив координатные оси и выбрав масштаб, нанесем на плоскость хОу найденные точки. Соединив их плавной кривой, получим траекторию точки, совершающей колебания в соответствии с уравнениями движения (1) и (2) (рис. 6.5).
Рис. 6.5 |
Для того чтобы указать направление движения точки, проследим за тем, как изменяется ее положение с течением времени. В начальный момент t =0 координаты точки равны x (0)=1 см и y (0)=2 см. В последующий момент времени, например при t 1=l с, координаты точек изменятся и станут равными х (1)= —1 см, y( t )=0. Зная положения точек в начальный и последующий (близкий) моменты времени, можно указать направление движения точки по траектории. На рис. 6.5 это направление движения указано стрелкой (от точки А к началу координат). После того как в момент t 2 = 2 с колеблющаяся точка достигнет точки D, она будет двигаться в обратном направлении.
Задачи
Кинематика гармонических колебаний
6.1. Уравнение колебаний точки имеет вид ,
где ω=π с-1, τ=0,2 с. Определить период Т и начальную фазу φ
колебаний.
6.2. Определить период Т, частоту v и начальную фазу φ колебаний, заданных уравнением , где ω=2,5π с-1,
τ=0,4 с.
6.3. Точка совершает колебания по закону ,
где A =4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и
; 2) х(0) = см и ; 3) х(0)=2см и ; 4)
х(0)= и . Построить векторную диаграмму для
момента t =0.
6.4. Точка совершает колебания.по закону ,
где A =4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и
; 2) x (0)= см и ; 3) х (0)= см и ;
4) x (0)= см и . Построить векторную диаграмму для
момента t =0.
6.5. Точка совершает колебания по закону ,
где A =2 см; ; φ= π/4 рад. Построить графики зависимости
от времени: 1) смещения x(t); 2) скорости ; 3) ускорения
6.6. Точка совершает колебания с амплитудой A =4 см и периодом Т=2 с. Написать уравнение этих колебаний, считая, что в
момент t =0 смещения x(0)=0 и . Определить фазу
для двух моментов времени: 1) когда смещение х= 1 см и ;
2) когда скорость = —6 см/с и x <0.
6.7. Точка равномерно движется по окружности против часовой стрелки с периодом Т=6 с. Диаметр d окружности равен 20 см. Написать уравнение движения проекции точки на ось х, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось х равна нулю. Найти смещение х, скорость и ускорение проекции точки в момент t= 1 с.
6.8. Определить максимальные значения скорости и ускорения точки, совершающей гармонические колебания с амплитудой А= 3 см и угловой частотой
6.9. Точка совершает колебания по закону , где А =
=5 см; . Определить ускорение точки в момент времени,
когда ее скорость =8 см/с.
6.10. Точка совершает гармонические колебания. Наибольшее
смещение x mах точки равно 10 см, наибольшая скорость =
=20 см/с. Найти угловую частоту ω колебаний и максимальное ускорение точки.
6.11. Максимальная скорость точки, совершающей гармонические колебания, равна10см/с, максимальное ускорение =
= 100 см/с2. Найти угловую частоту ω колебаний, их период Т
и амплитуду А. Написать уравнение колебаний, приняв начальную фазу равной нулю.
6.12. Точка совершает колебания по закону . В некоторый момент времени смещение х 1 точки оказалось равным 5 см. Когда фаза колебаний увеличилась вдвое, смещение х, стало равным 8 см. Найти амплитуду А колебаний.
6.13. Колебания точки происходят по закону .
В некоторый момент времени смещение х точки равно 5 см, ее скорость
= 20 см/с и ускорение =—80 см/с2. Найти амплитуду A, угловую частоту ω, период Т колебаний и фазу в рассматриваемый момент времени.
Сложение колебаний
6.14. Два одинаково направленных гармонических колебания одного периода с амплитудами A 1=10 см и A 2=6 см складываются в одно колебание с амплитудой А= 14 см. Найти разность фаз складываемых колебаний.
6.15. Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складываются в одно колебание той же амплитуды. Найти разность фаз складываемых колебаний.
6.16. Определить амплитуду А и начальную фазу ф результи
рующего колебания, возникающего при сложении двух колебаний
одинаковых направления и периода: и
, где A 1= A 2=1 см; ω=π с-1; τ=0,5 с. Найти уравнение результирующего колебания.
6.17. Точка участвует в двух одинаково направленных колебаниях: и , где а 1 = 1 см; A 2=2 см; ω=
= 1 с-1. Определить амплитуду А результирующего колебания,
его частоту v и начальную фазу φ. Найти уравнение этого движения.
6.18. Складываются два гармонических колебания одного на
правления с одинаковыми периодами T 1= T 2=1,5 с и амплитудами
А 1 =А 2 = 2 см. Начальные фазы колебаний и . Определить амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение и построить с соблюдением масштаба
векторную диаграмму сложения амплитуд.
6.19. Складываются три гармонических колебания одного направления с одинаковыми периодами Т1=Т2=Т3=2 с и амплитудами A 1= A 2= A 3=3 см. Начальные фазы колебаний φ1=0, φ2=π/3, φ3=2π/3. Построить векторную диаграмму сложения амплитуд. Определить из чертежа амплитуду А и начальную фазу φ результирующего колебания. Найти его уравнение.
6.20. Складываются два гармонических колебания одинаковой
частоты и одинакового направления: и x 2=
= . Начертить векторную диаграмму для момента
времени t =0. Определить аналитически амплитуду А и начальную
фазу φ результирующего колебания. Отложить A и φ на векторной
диаграмме. Найти уравнение результирующего колебания (в тригонометрической форме через косинус). Задачу решить для двух
случаев: 1) А 1 = 1 см, φ1=π/3; A 2=2 см, φ2=5π/6; 2) А1= 1 см,
φ1=2π/3; A 2=1 см, φ2=7π/6.
6.21. Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период Т биений.
6.22. Складываются два взаимно перпендикулярных колебания,
выражаемых уравнениями и , где
а 1= 2 см, A 2=1 см, , τ=0,5 с. Найти уравнение траектории
и построить ее, показав направление движения точки.
6.23. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям
и выражаемых уравнениями и ,
где а 1 = 4 см, A 1=8 см, , τ=1 с. Найти уравнение траектории точки и построить график ее движения.
6.24. Точка совершает одновременно два гармонических колебания одинаковой частоты, происходящих по взаимно перпендикулярным направлениями выражаемых уравнениями: 1) и
Найти (для восьми случаев) уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: А=2 см, A 1=3 см, А 2 = 1 см; φ1=π/2, φ2=π.
6.25. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями и
, где A 1 = 2 см, A 2=1 см. Найти уравнение траектории
точки и построить ее, указав направление движения.
6.26. Точка одновременно совершает два гармонических колебания, происходящих по взаимно перпендикулярным направлениям
и выражаемых уравнениями и , где А 1 =
=0,5 см; A 2=2 см. Найти уравнение траектории точки и построить
ее, указав направление движения.
6.27. Движение точки задано уравнениями и у=
= , где A 1=10 см, A 2=5 см, ω=2 с-1, τ=π/4 с. Найти
уравнение траектории и скорости точки в момент времени t =0,5 с.
6.28. Материальная точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями
и , где A 1 =2 см, A 2=1 см. Найти
уравнение траектории и построить ее.
6.29. Точка участвует одновременно в двух гармонических колебаниях, происходящих по взаимно перпендикулярным направлениям описываемых уравнениями: 1) и
Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A =2 см; A 1 =з см.
6.30. Точка участвует одновременно в двух взаимно перпенди-
кулярных колебаниях, выражаемых уравнениями и
y=A2 sin 0,5ω t, где A 1 = 2 см, A 2=3 см. Найти уравнение траектории точки и построить ее, указав направление движения.
6.31. Смещение светящейся точки на экране осциллографа является результатом сложения двух взаимно перпендикулярных колебаний, которые описываются уравнениями: 1) х=А sin 3 ω t и у = A sin 2ω t; 2) х=А sin 3ω t и y = A cos 2ω t; 3) х=А sin 3ω t и y= A cos ω t.
Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять А =4 см.
Динамика гармонических колебаний. Маятники
6.32. Материальная точка массой т =50 г совершает колебания, уравнение которых имеет вид х=А cos ω t, где А = 10 см, ω=5 с-1. Найти силу F, действующую на точку, в двух случаях: 1) в момент, когда фаза ω t =π/3; 2) в положении наибольшего смещения точки.
6.33. Колебания материальной точки массой т =0,1 г происходят согласно уравнению х = A cos ω t, где A =5 см; ω=20 с-1. Определить максимальные значения возвращающей силы Fmax и кинетической энергии Т mах.
6.34. Найти возвращающую силу F в момент t =1 с и полную энергию Е материальной точки, совершающей колебания по закону х=А cos ω t, где А = 20 см; ω=2π/3 с-1. Масса т материальной точки равна 10 г.
6.35. Колебания материальной точки происходят согласно уравнению х=A cos ω t, где A =8 см, ω=π/6 с-1. В момент, когда возвращающая сила F в первый раз достигла значения —5 мН, потенциальная энергия П точки стала равной 100 мкДж. Найти этот момент времени t и соответствующую ему фазу ω t.
6.36. Грузик массой m =250 г, подвешенный к пружине, колеблется по вертикали с периодом Т= 1 с. Определить жесткость k пружины.
6.37. К спиральной пружине подвесили грузик, в результате чего пружина растянулась на х=9 см. Каков будет период Т колебаний грузика, если его немного оттянуть вниз и затем отпустить?
6.38. Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой A =4 см. Определить полную энергию Е колебаний гири, если жесткость k пружины равна 1 кН/м.
6.39. Найти отношение длин двух математических маятников, если отношение периодов их колебаний равно 1,5.
6.40. Математический маятник длиной l= 1 м установлен в лифте. Лифт поднимается с ускорением а =2,5 м/с2. Определить период Т колебаний маятника.
6.41. На концах тонкого стержня длиной l =30 см укреплены одинаковые грузики по одному на каждом конце. Стержень с грузиками колеблется около горизонтальной оси, проходящей через точку, удаленную на d=10 см от одного из концов стержня. Определить приведенную длину L и период Т колебаний такого физического маятника. Массой стержня пренебречь.
6.42. На стержне длиной l =30 см укреплены два одинаковых грузика: один — в середине стержня, другой — на одном из его концов. Стержень с грузиком колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период Т колебаний такой системы. Массой стержня пренебречь.
6.43. Система из трех грузов, соединенных стержнями длиной l =30 см (рис. 6.6), колеблется относительно горизонтальной оси, проходящей через точку О перпендикулярно плоскости чертежа. Найти период Т колебаний системы. Массами стержней пренебречь, грузы рассматривать как материальные точки.
6.44. Тонкий обруч, повешенный на гвоздь, вбитый горизонтально в стену, колеблется в плоскости, параллельной стене. Радиус R обруча равен 30 см. Вычислить период Т колебаний обруча.
Рис. 6.6 |
Рис. 6.7 |
6.45. Однородный диск радиусом R =30 см колеблется около горизонтальной оси, проходящей через одну из образующих цилиндрической поверхности диска. Каков период Т его колебаний?
6.46. Диск радиусом R= 24 см колеблется около горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить приведенную длину L и период Т колебаний такого маятника.
6.47. Из тонкого однородного диска радиусом R =20 см вырезана часть, имеющая вид круга радиусом r= 10 см, так, как это показано на рис. 6.7. Оставшаяся часть диска колеблется относительно горизонтальной оси О, совпадающей с одной из образующих цилиндрической поверхности диска. Найти период Т колебаний такого маятника.
6.48. Математический маятник длиной l 1=40 см и физический маятник в виде тонкого прямого стержня длиной l 2=60 см синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние а центра масс стержня от оси колебаний.
6.49. Физический маятник в виде тонкого прямого стержня длиной l =120 см колеблется около горизонтальной оси, проходящей перпендикулярно стержню через точку, удаленную на некоторое расстояние а от центра масс стержня. При каком значении а период Т колебаний имеет наименьшее значение?
6.50. Физический маятник представляет собой тонкий однородный стержень массой т с укрепленным на нем маленьким шариком массой т. Маятник совершает колебания около горизонтальной оси, проходящей через точку О на стержне. Определить период Т гармонических колебаний маятника для случаев а, б, в, г, изображенных на рис. 6.8. Длина l стержня равна 1 м. Шарик рассматривать как материальную точку.
Рис. 6.9 |
Рис. 6.8 |
6.51. Физический маятник представляет собой тонкий однородный стержень массой т с укрепленными на нем двумя маленькими шариками массами т и 2 т. Маятник совершает колебания около горизонтальной оси, проходящей через точку О на стержне. Определить частоту ν гармонических колебаний маятника для случаев а, б, в, г, изображенных на рис. 6.9. Длина l стержня равна 1 м. Шарики рассматривать как материальные точки.
6.52. Тело массой т =4 кг, закрепленное на горизонтальной оси, совершало колебания с периодом T 1=0,8 с. Когда на эту ось был насажен диск так, что его ось совпала с осью колебаний тела, период T 2 колебаний стал равным 1,2 с. Радиус R диска равен 20 см, масса его равна массе тела. Найти момент инерции J тела относительно оси колебаний.
6.53. Ареометр массой т =50 г, имеющий трубку диаметром d = 1 см, плавает в воде. Ареометр немного погрузили в воду и затем предоставили самому себе, в результате чего он стал совершать гармонические колебания. Найти период Т этих колебаний.
6.54. В открытую с обоих концов U-образную трубку с площадью поперечного сечения S =0,4 см2 быстро вливают ртуть массой т =200 г. Определить период Т колебаний ртути в трубке.
6.55. Набухшее бревно, сечение которого постоянно по всей длине, погрузилось вертикально в воду так, что над водой находится лишь малая (по сравнению с длиной) его часть. Период Т колебаний бревна равен 5 с. Определить длину l бревна.
Затухающие колебания
6.56. Амплитуда затухающих колебаний маятника за время t1 =5 мин уменьшилась в два раза. За какое время t2, считая от начального момента, амплитуда уменьшится в восемь раз?
6.57. За время t =8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза. Определить коэффициент затухания δ.
6.58. Амплитуда колебаний маятника длиной l= 1 м за время t =10 мин уменьшилась в два раза. Определить логарифмический декремент колебаний Θ.
6.59. Логарифмический декремент колебаний Θ маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза.
6.60. Гиря массой т =500 г подвешена к спиральной пружине жесткостью k =20 Н/м и совершает упругие колебания в некоторой среде. Логарифмический декремент колебаний Θ=0,004. Определить число N полных колебаний, которые должна совершить гиря, чтобы амплитуда колебаний уменьшилась в n =2 раза. За какое время t произойдет это уменьшение?
6.61. Тело массой т =5 г совершает затухающие колебания. В течение времени t= 50 с тело потеряло 60 % своей энергии. Определить коэффициент сопротивления b.
6.62. Определить период Т затухающих колебаний, если период Т0 собственных колебаний системы равен 1 с и логарифмический декремент колебаний Θ=0,628.
6.63. Найти число N полных колебаний системы, в течение которых энергия системы уменьшилась в n =2 раза. Логарифмический декремент колебаний Θ=0,01.
Рис. 6.10 |
6.64. Тело массой т =1 кг находится в вязкой среде с коэффициентом сопротивления b =0,05 кг/с. С помощью двух одинаковых пружин жесткостью k =50 Н/м каждое тело удерживается в положении равновесия, пружины при этом не деформированы (рис. 6.10). Тело сместили от положения равновесия и
отпустили. Определить: 1) коэффициент затухания δ; 2) частоту ν колебаний; 3) логарифмический декремент колебаний Θ; 4) число N колебаний, по прошествии которых амплитуда уменьшится в е раз.
Вынужденные колебания. Резонанс
6.65. Под действием силы тяжести электродвигателя консольная балка, на которой он установлен, прогнулась на h =1 мм. При какой частоте вращения п якоря электродвигателя может возникнуть опасность резонанса?
6.66. Вагон массой т =80 т имеет четыре рессоры. Жесткость k
пружин каждой рессоры равна 500 кН/м. При какой скорости υ вагон начнет сильно раскачиваться вследствие толчков на стыках рельс, если длина l рельса равна 12,8 м?
6.67. Колебательная система совершает затухающие колебания с частотой ν=1000 Гц. Определить частоту ν0 собственных колебаний, если резонансная частота νpeз=998 Гц.
6.68. Определить, на сколько резонансная частота отличается от частоты ν0=l кГц собственных колебаний системы, характеризуемой коэффициентом затухания δ=400 с-1.
6.69. Определить логарифмический декремент колебаний Θ колебательной системы, для которой резонанс наблюдается при частоте, меньшей собственной частоты ν0=10 кГц на Δν=2 Гц.
6.70. Период Т 0 собственных колебаний пружинного маятника равен 0,55 с. В вязкой среде период Т того же маятника стал равным 0,56 с. Определить резонансную частоту ν peз колебаний.
6.71. Пружинный маятник (жесткость k пружины равна 10 Н/м, масса т груза равна 100 г) совершает вынужденные колебания в вязкой среде с коэффициентом сопротивления r =2·10-2 кг/с. Определить коэффициент затухания δ и резонансную амплитуду A рез, если амплитудное значение вынуждающей силы F 0=10 мН.
6.72. Тело совершает вынужденные колебания в среде с коэффициентом сопротивления r= 1 г/с. Считая затухание малым, определить амплитудное значение вынуждающей силы, если резонансная амплитуда A рез=0,5 см и частота ν 0 собственных колебаний равна 10 Гц.
6.73. Амплитуды вынужденных гармонических колебаний при частоте ν1=400 Гц и ν2=600 Гц равны между собой. Определить резонансную частоту νpeз. Затуханием пренебречь.
6.74. К спиральной пружине жесткостью k= 10 Н/м подвесили грузик массой т =10 г и погрузили всю систему в вязкую среду. Приняв коэффициент сопротивления b равным 0,1 кг/с, определить: 1) частоту ν0 собственных колебаний; 2) резонансную частоту νpeз; 3) резонансную амплитуду A рез, если вынуждающая сила изменяется по гармоническому закону и ее амплитудное значение F0= =0,02 Н; 4) отношение резонансной амплитуды к статическому смещению под действием силы F0.
6.75. Во сколько раз амплитуда вынужденных колебаний будет меньше резонансной амплитуды, если частота изменения вынуждающей силы будет больше резонансной частоты: 1) на 10 %? 2) в два раза? Коэффициент затухания δ в обоих случаях принять равным 0,1 ω0 (ω 0 — угловая частота собственных колебаний).