Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Нахождение угла между прямой и плоскостью




  • Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и её проекцией на данную плоскость.
  • 0 ˚<(a,α)<90˚.

Угол между прямой l и плоскостью α можно вычислить по формуле или в координатах , где - вектор нормали к плоскости α, - направляющий векор прямой l;

Пример 1. В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра АВ и АА1 равны 1, а ребро АD=2. Точка Е – середина ребра В1С1. Найдите угол между прямой ВЕ и плоскостью (АВ1С).

 

Решение: Составим уравнение плоскости (АВ1С.):

ах+bу+cz+d=0, где a, b и c – координаты нормали к плоскости.

Чтобы составить это уравнение, необходимо определить координаты трёх точек, лежащих в данной плоскости: А(1; 0; 0), В1(0;0;1), С(0;2;0).

Решая систему

находим коэффициенты а, b и с уравнения ах+bу+cz+d=0: а= -d, b= , c=-d. Таким образом, уравнение примет вид или, после упрощения, 2х+у+2z-2=0. Значит, нормаль n к этой плоскости имеет координаты .

Найдем координаты вектора

Найдем угол между вектором и нормалью к плоскости по формуле скалярного произведения векторов:

.

Ответ: 45˚

Нахождение угла между двумя плоскостями

  • Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.
  • Величина двугранного угла принадлежит промежутку(0˚; 180˚)
  • Величина угла между двумя пересекающимися плоскостями принадлежит промежутку (0˚; 90˚].
  • Угол между двумя параллельными плоскостями считается равным 0˚.

Угол между двумя пересекающимися плоскостями можно вычислить как угол между нормалями к этим плоскостям по формуле или в координатной форме , где - вектор нормали плоскости А1х+В1у+С1z+D1=0, - вектор нормали плоскости A2x+B2y+C2z+D2=0.

Пример 1. В единичном кубе АВСDA1В1С1D1 найдите угол между плоскостями АD1Е и D1FC, где точки Е и F-середины ребер А1В1 и В1С1 соответственно.

Решение: Введем прямоугольную систему координат с началом в точке А(0;0;0). Далее находим координаты тех точек, которые необходимы для составления уравнений плоскостей: (1;0;1), E(0;0,5;1), C(1;1;0), F(0,5;1;1). Составим уравнение плоскости (A E), используя уравнение А1х+В1у+С1z+D1=0. Подставим координаты всех трех точек в это уравнение и решим систему из трех уравнений:

А∙0 + В∙0 + С∙0 +D =0;

А∙1 + В∙0 + С∙1 +D =0;

А∙0 + В∙0,5 + С∙1 +D =0.

Получим, что А= - С, В= - 2С, D= 0. Таким образом, уравнение примет вид: х +2у – z =0.

Значит, А1=1, В1= 2, С1= -1

Составим уравнение плоскости (CF ), используя уравнение А2х+В2у+С2z+D1=0. Подставим координаты всех трех точек в это уравнение и решим систему из трех уравнений:

А∙1 + В∙1 + С∙0 +D =0;

А∙1 + В∙0 + С∙1 +D =0;

А∙0,5 + В∙1 + С∙1 +D =0.

Получим, что В = С, А = 2С, D = - 3С. Таким образом, уравнение примет вид:

2х +у +z – 3 = 0. Значит, А2= 2, В2 = 1, С2= 1. По формуле:

.

Значит, угол между плоскостями равен 60̊. Ответ: 60̊.





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 503 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2599 - | 2174 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.