.


:




:

































 

 

 

 


delta ro/delta t + div j = 0

div j = 0 - .

:

rot H = 4 pi/c j

, , j = 0, . , . , , , j.

div D = 4 pi ro, , :

delta ro/ delta t - 1/ (4 pi) div (delta D/delta t) = 0

j_ = 1/(4 pi) (delta D/delta t) - . j + j_ - .

rot H = 4 pi/c (j + j_)

.

, Q. , , . . . . B . , , , , B . , , . , , , , , . , , j, .

, -

. , ,

I + I_ = 0

I_ = dQ/dt

Q = r^2 D

, :

j_ = 1/(4 pi) (delta D/delta t)

.

, . , . , , .


1) sumo(L) H dl = 4pi/c sum(S) (j + 1/4pi dD/dt) dS,

2) sumo(L) E dl = -1/c sum(S) dB/dt dS,

3) sumo(S) (D dS) = 4pi sum ro dV,

4) sum(S) (B dS) = 0.

. . , , . . . .

:

1) rot E = 0, div D = 4pi ro. 2) rot H = 4pi/c j, div B = 0.

/ :

1) D_2n - D_1n = 4pi sigma;

2) B_1n = B_2n;

3) E_1t = E_2t;

4) [n H_2] - [n H_1] = 4pi/c*i,

sigma - . , i - . .

8, 16:

3*(E, D, B, H, j) ro. 8 . / , ,

: D =

eE, B=muH, j=lE. epsilon, mu, lambda - . .

.


 

3 4. . 1) rot H = 4pi/c j + 1/c dD/dt; 2) rot E = -1/c dB/dt; 3) div D = 4pi ro; 4) div B = 0. . . , , . . . . : 1) rot E = 0, div D = 4pi ro. 2) rot H = 4pi/c j, div B = 0. / : 1) D_2n - D_1n = 4pi sigma; 2) B_1n = B_2n; 3) E_1t = E_2t; 4) [n H_2] - [n H_1] = 4pi/c*i, sigma - . , i - . . 8, 16: 3*(E, D, B, H, j) ro. 8 . / , , : D = eE, B=muH, j=lE. epsilon, mu, lambda - . . . 35. (jE = lE^2=0 => l=0 - ). , . . . : rot H = D'/c, rot E = -B'/c, div D = 0, div B = 0. x t, dH_z/dx = -1/c dD_y/dt, dH_y/dx = 1/c dD_z/dt, dE_y/dx = -1/c dB_z/dt, dE_z/dx = 1/c dB_y/dt, dD_x/dx = dD_x/dt = dB_x/dx = dB_x/dt = 0. D_x, B_x x t, . D = eE, B = mH; dH/dx = -e/c dE/dt, dE_dx = -m/c dH/dt. E||OY, H||OZ. d2E/dx2 - 1/v^2*d2E/dt2 = 0, d2H/dx2 - 1/v^2*d2H/dt2 = 0, v = c/sqrt(em). E H => X v. . . . . / . , . (e, m - ), XY. E = 2pi sigma/e. ( , ), . ! Y: z>0 Y . . Y. , / () . - OAMN OQPA (OA||Z, ON||X, OQ||Y, AM=1). .: sum(OAMN) E dl = -1/c d_/dt, sum(OQPA) H dl = 1/c d_/dt, E = E_x = -1/c d_ dt, H = H_y = -1/c d_/dt. dt d_ = -vB dt, d_ = -vD dt => d_/dt = -vB, d_/dt = -vD => E = v/c * B, H = v/c * D. E = -1/c [vB], H = 1/c [vD]. D = eE, B = mH, E = v/c*mH, H = v/c*eE => v = c/sqrt(em). e=m=1, v=c, .. .
36. (jE = lE^2=0 => l=0 - ). , . . . : rot H = D'/c, rot E = -B'/c, div D = 0, div B = 0. x t, dH_z/dx = -1/c dD_y/dt, dH_y/dx = 1/c dD_z/dt, dE_y/dx = -1/c dB_z/dt, dE_z/dx = 1/c dB_y/dt, dD_x/dx = dD_x/dt = dB_x/dx = dB_x/dt = 0. D_x, B_x x t, . D = eE, B = mH; dH/dx = -e/c dE/dt, dE_dx = -m/c dH/dt. E||OY, H||OZ. d2E/dx2 - 1/v^2*d2E/dt2 = 0, d2H/dx2 - 1/v^2*d2H/dt2 = 0, v = c/sqrt(em). E H => X v. , X: E = f(x-vt), H=g(x- vt). dE/dt = -vf', dH/dx = g', g'=ev/c*f'; g=ev/c*f, H=v/c*D, . E = v/c*B, H=1/c [vD], E = -1/c [vB]. (E, B, v) . : E = E0 cos w(t-x/v), H = H0 cos w(t-x/v); k:=w/v - , E = E0 cos (wt-kx), H=H0 cos(wt-kx). l = 2pi/k=2piv/w=v/nu. wt-kx=const; N - , x = (Nr) => kx=(kr), k=kN - ; E = E0 cos(wt-kr), H = H0 cos(wt-kr); E = E0 exp(i(wt-kr)), H=H0 e(i(wt-kr)). s1=a cos(wt-kx). s2 = a cos(wt+kx) - . s = s1+s2 = 2a cos kx cos wt - . cos kx = 0 - . cos kx = max - . / delta x = lambda/2. : l = n lambda/2. E_y = E0 cos(wt-/+ kx), H_z = H0 cos(wt-/+kx). E_x = 2E0 cos kx cos wt, H_y = 2H0 sin kx sin wt. = 0 => . . . , . ( E H .) => E_r = -E, H_r = H_r, 2H. i || E. . 2H = 4pi i/c, i=cH/2pi, P = 1/c*iH_ = 1/2pi*H^2 . E=H => P = 1/2pi*EH = 1/4pi * (E^2+H^2) = 2w, w - . . . H, . . E, . . 3 7. : k (, z), , z , . . (x, z). , , (, z), . . - , , . _1 = a cos(wt - k_y y-k_z z); k_x =0; k_y=ksin al, k_z=kcos al. , _1 '_1 = a' cos(wt - k'_y y-k'_z z), , , ( = 0). , , (' = ), (l = l'), '_1 ( = 0) (E_1x (fi=pi)), . . '_1 = a cos(wt + k_y y-k_z +pi), k' k'_y = ky, k'_z=k_z, +k_y y -k_y y . , : _(, z, t) = 2a sin(k_y y) sin(wt k_z z). ( = 0): E_x(0,z,t)=0, . . . , d (. . = d) ( ), d , d = = = npi/k_y, 0 < < d , ( = 0 = d), . E_x(y,z,t)=2a sin (npi y/d) sin(wt-k_z z), k_z=sqrt(k^2- (npi/d)^2) = sqrt((w/c)^2-n^2(pi/d)^2).

 

37.2., , d ( ) . n "" , z = const: A_n(y) = 2a sin(n pi y/d). , n, , , , . . , k k' al_n , n al: sin al_n = npi/(kd) = n lambda0 / (2d), l0 = 2pi/k = 2pi c/w . z, wt k_z z = const, v_ = dz/dt = w/k_z = w/sqrt((w/c)^2-n^2(pi/d)^2) = c/sqrt(1-n^2(l0/2d)^2). , . , 2pi (. . ) - , l = 2pi/k_z = l0/sqrt(1-n^2(l0/2d)^2) > l0. , . , , k_z , _(, z, t) z . (w/c)^2 >= n^2(pi/d)^2. , w_ , () . = 1: w_Kp = pi c/d. l_ = 2pi /w_ = 2d , . l , sin l = l_/(2d) = 1, . . = pi/2 - . 3 8. L = nl/2 (l , n ), . . . , () . ( ) ; ( ) . , , . . ., -, , , . E_x = A1 cos k_x x sin k_y y sin k_z z*exp(iwt); E_y = A2 cos k_y y sin k_x x sin k_z z*exp(iwt); E_z = A3 sin k_x x sin k_y y sin k_z z*exp(iwt); K_x L_x = pi*m; K_y L_y = pi*n; K_z*L_z = pi l. n,m,l - . K = sqrt(k_x^2+k_y^2+k_z^2) = wsqrt(2)/c => w^2 = c^2/2*(k_x^2+k_y^2+k_z^2); mu = 1. : P = d^2R/2; Q = 2/d*V/S. d - -, b = c/sqrt(2pi mu l v), l - .
39. . . . , ( ) ( , , ). , - . , . q(x) - , V(x) - - . ADCB, AD , BC . dx. dt A I(x)dt, D I(x + dx)dt. - delta I/delta t dx dt q'dx dt - , ( , q - ). q' = - delta I/delta x ADCB sumo E dl = -1/c ' dx, sumo(DC) E dl = V(x + dx) sumo (BA) E dl = -V(x) sumo(DC + BA) E dl = delta V/delta x dx sumo (AD + CB) E dl = RI dx Rdx - AD CB. delta V/delta x + RI = -1/c . . C L - . q = CV, = LI - . delta I/delta x = -C delta V/delta t delta V/delta x = - L/c^2 delta I/delta t ( ... , ), , v = c/sqrt(LC) V = +- WI W - W = 1/c sqrt(L/C) a L = 2m ln(d/a) C = e/2ln(d/a) d - . v = c/sqrt(em) . 4 0. . . . . . , dA_ = 1/4pi (E dD + H dB) +(jE)dt; du = 1/4pi (ED' + HB') + (jE), u - . , . . . 1 2 . . , E(1/4pi D'+j)+1/4pi*HB' = c/4pi*(E rot H - H rot E). E rot H - H rot E = -div [EH]. S:= c/4pi*[EH], du/dt + div S = 0 - - . S / . d/ dt sum(V) u dV = sumo S_n dF, V - , F. - . / - . 1. / . , 1 1 2. S = vw, w = e/4pi * E^2; sqrt(e) E = sqrt(m)H => w = 1/4pi*sqrt(em) EH; S = vw = c/4pi*EH. 2. . r J. H = 2J/(cr) = 2jpi r/c. E || . S . / - . 2pi rl. - 1 S*2pi rl = c/4pi*EH*2pi rl = pi r^2 l*jE = V*jE. . / . . 3. . ! , j -> D'/(4pi) - . 1 V/4pi*(ED'), V - . dW = V/4pi*(ED') dt = V/4pi (EdD). D = eE, W = V/8pi (ED).

 

4 1. , , , , . , l j = lE => . f = 1/c*[jB] = l/c*[EB], . , . , . ( E H .) => E_r = -E, H_r = H_r, 2H. i || E. . 2H = 4pi i/c, i=cH/2pi, P = 1/c*iH_ = 1/2pi*H^2 . E=H => P = 1/2pi*EH = 1/4pi * (E^2+H^2) = 2w, w - . . . H, . . E, . . h = c. . I_ = P = 1/2pi [EH]. ! => I_ = -1/2 I_ = 1/4pi [EH]. , , .. g_ = 1/(4pi c)*[EH] = 1/c^2*S, S - . . 42. . ( ). . - . S = sin^2( ) p" ^2 _(t - r/v) N/(4 pi epsilon v^3 r^2) . - , , . , . , p" = w^2 p, , . t - r/v , r , v.
43. I II ( , , ). , k, E, . , . , , . , . , , . , , . , , ; , , , k. I II , , n1, n2 ( ). , : ? , ? : , . , , . , , , . , . . , , . , . (H , E ) E1 = E2 => E_i + E_r = E_d. (H , ) H1 = H2 => H_i + H_r = H_d. , . 43.2. - . , . , ( , ). . i, r, d , k_i, k_r, k_d . kr k_x*. , : E_i0*exp(ikx sin f) + E_r0 exp(ikx sin f') = _d0 exp(k'x sin psi). , . k' - . , . , , , : k sin f = k sin f' = k(n2/n1) sin psi. , f=f'; sin f/sin psi = n = n2/n1. n = sqrt(em). . . . (m=1), n1=1, n2=n. E_r0 = rE_i0, E_d0 = tE_i0. , . H ~ nE. [E_t]=0 =>Ei+Er=Ed; [H_t]=0 => Hi cos f + Hr cos f = -Hd cos psi => -Ei cos f+Er cos fi = -n*Ed cos psi; 1+r=t; (1-r) cos f = t(sin f/sin psi) cos psi => r = sin(fi-psi)/sin(fi+psi); t = 2sin psi cos fi/sin(fi+psi). : [Et]=0 => Ei cos fi - Er cos fi = Ed cos psi; [Ht]=0 => Hi+Hr=Hd => Ei+Er=sin fi/ sin psi*Ed. t = sin fi/sin psi*(1+r); cos fi/cos psi*(1-r)=sin fi/sin psi*(1+r). r = tg(fi-psi)/tg(fi+psi); t = 2sin psi cos fi / sin(fi+psi)cos(fi-psi). - . r0 = (n-1)/(n+1); t0 = 2/(n+1). : sin f > n2/n1. fi+psi=pi/2 r_|| = 0. , . fi_B = arctg n. . , . . , .

 

4 4. - . rot H = 4pi/c*j, rot E = -1/c*B'. j=lE, B=mH => j=c/(4pi m)*rot B; rot j = -l/c*B'. x; j||Y, B||Z. dj/dx = -l/c*B'; j = -c^2/(4pi ml)*d/dx*(l/c*B); D = c^2/(4pi ml) - . . , . /2 , , L=sqrt(Dt) , L~=sqrt(DT/2)~=c sqrt(T/(8pi ml))~=c/sqrt(8pi ml nu), nu - . - -. 4 5. . . . - . q"+2yq'+w0^2*q = X(t) - . q"+2yq'+w0^2*q = 0; k: q = kexp(-yt); k" + (w0^2 - y^2)k = 0. 1: w0^2 - y^2 > 0. w^2:= w0^2-y^2; k"+w^2 k = 0. k = a cos (wt+b); q = aexp(-yt)*cos(wt+b) - . T = 2pi/w - (). A = ae^(-yt) - . t = 1/y - . d = ln A1/A2 = yT - . N = t/T = 1/yT = 1/d. Q:= piN = pi/d - . 2: w0^2-y^2 = 0, q = (a+bt)exp(-yt), . 3: w0^2-y^2 < 0, k = C1exp(-sqrt(y^2-w0^2)t) +C2exp(+sqrt(y^2-w0^2)t); q = C1exp(-a1t) + C2exp(- a2t); a1 = y+sqrt(y2-w0^2); a2 = y-sqrt(y2-w0^2).
4 6. , , . . w0^2 - y^2 > 0. q = aexp(-yt)*cos(wt+b) - . T = 2pi/w - (). A = ae^(-yt) - . t = 1/y - . d = ln A1/A2 = yT - . N = t/T = 1/yT = 1/d. Q:= piN = pi/d - . - , L R. . sum E_l dl = -d/dt. 21 - , 34 - . sum(13) E dl = sum j"/l*dl = J sum dl/Sl = RJ, R - . sum(32) E dl = V = q/C; sum(21) E dl = -; d/dt + RJ + q/C = . = LI; J = dq/dt; d/dt(L dq/dt) + R dq/dt + q/C = EDS; L d2q/dt2 + R dq/dt + q/C = EDS. : w0^2 = 1/LC, 2y = R/L, X = EDS/ C, q"+2yq'+w0^2*q = X. w0 - . , y - . . 47. - . , . . . q" + 2yq' + w_0^2 q = X = X_0 exp(iwt) q = q_0 exp(iwt) q = X exp(iwt) / (w_0^2 - w^2 + 2iwy) . , . tau = 1/y - . - . P = Xq' P = -waX_0 cos wt sin(wt - delta) = waX_0sin delta/2 , . w = w_0 a_max = X_0/(2 w_0 y) = w_0 a_0/2y a_0 . Q = a_max/a_0 = w_0/2y = pi/d d - . w_1 w_2 - , . (w_1^2 - w_0^2)^2 = 4w_1^2 y^2 (w_2^2 - w_0^2)^2 = 4w_2^2 y^2 |w_1 - w_0| << w_0, |w_2 - w_0| << w_0 delta w = w_2 - w_1 = 2y = w_0/Q delta w - , . - . () . -. f(t) , S(t) ( ) . , f(t) S(t). , S(t) f/(t), S(t) = L [f/(t)]. ( L f/(t) S(t).) ( ) : , , . . f_1(t). - S_1 (t). S_1" + 2 delta S_1' + w_0^2 S_1 = w_0^2 f_1(t) S_2" + 2 delta S_2' + w_0^2 S_2 = w_0^2 f_2(t) f(t) = C_1 f_1(t) + C_2 f_2(t) S(t) = C_1 S_1(t) + C_2 S_2(t) - . .

 

4 8. X = X0 cos wt; q"+2yq'+w0^2*q = X(t); q"+2yq'+w0^2 q = X0exp(iwt); q = q0exp(iwt) - . q' = iwq, q" = -w^2*q; q = X0/(w0^2 - w^2+2iwy)*exp(iwt) - w. q = X0/(w0^2 - w^2+2iwy)*exp(iwt) + exp(-yt)*(C1 cos w0t + C2 sin w0t). - . , , . . . w0^2-w^2+2iwy =: ro exp(ib), ro,b-. q = X0/ro*exp(i(wt-b)), q = a cos (wt-b); w0^2- w^2 = ro cos b, 2wy = ro sin b, => a = X0/sqrt((w0^2- w^2)^2+4w^2y^2), tg b = 2wy/(w0^2-w^2). - , : a cos((w0+W)t) + a cos((w0-W)t) = 2a cos Wt cos w0 t. 2W - . a(t) = 2a cos Wt. 4 9. , , . . . : , , . : x = a cos (w0t+b), y = a sin (w0t+b); e^(i fi) = cos fi + i sin fi; z = aexp(i(w0t+b)). Re(z)=x - . x = a exp(i(w0t+b)). A:= a exp(ib) - . x = Aexp(iw0t) (): Z_L = iOmegaL; Z_R = R; Z_C = 1/(iOmegaC). . , . U_L = U_C - ( ). . w0 = 1/sqrt(LC). Z = R. - .
5 0. 1 : . , , , , . 2 : . , , . - : 3 fi1- fi2+E3=I3R3, : E1+E2+E3=I1R1+I2R2+I3R3. , >0. , .. . , . . sum (E dl) = -d/dt. dA = EDS dq, dq - . P = EDS dq/dt = EJ. ., EDS = EDS0 cos wt, J=J0 cos(wt-b), P = 1/2 EDS0 J0 cos b. EDS0, J0 - . EDS_^2 = 1/T*sum(0,T) EDS^2 dt, J_^2 = 1/ T*sum(0, T) J^2 dt. E = E0/sqr(2), J = J0/sqr(2). P_ = _ J_ cos b. 51. . T/2, T/3... f(t) = Sigma c_k E^(i w_k t), , . c_m = 1/T sum(0, T) f(t) exp(-i w_m t) dt . , : X(t) = sum(0, inf) a(w) exp(iwt) dw a(w) = 1/2pi sum(-inf, inf) X(t) exp(-iwt) dt .

 

52. . . . , - S(t) = a(t) cos(w0t + fi(t)) - . a(t) = a0 (1+m cos Omega t), m <= 1 - . S(t) = a0 (1+mcos Omega t) cos w0t = a0 cos w0t+(a0m/2) cos (w0+Omega)t+ (a0m/2)cos(w0-Omega)t. S1 - , S2, S3 - . S1 , S2 S3 Omega. fi(t) = m cos Wt. m - S. S(t) = a0 cos w0t + a0m/2 cos ((w0+W)t+pi/2) + a0m/2 cos ((w0-W)t+pi/2). 53. . . - , . . . T/2, T/3... f(t) = Sigma c_k E^(i w_k t), , . c_m = 1/T sum(0, T) f(t) exp(-i w_m t) dt . , : X(t) = sum(0, inf) a(w) exp(iwt) dw a(w) = 1/2pi sum(-inf, inf) X(t) exp(-iwt) dt . : - .   : delta E delta t >= h( )/2 delts nu delts t >= h . .
55. . , , , - . : d/dt + RI + q/C = 0 d/dt(L dq/dt) + R dq/dt + q/C = 0 , , (L_2/L_1), . : , . 58. . . . . - , , - - . - , . , , , e. AB MN. , - l. sigma = nle, n - . E = 4 pi sigma = 4 pi nle, E^2/(8 pi) = 2 pi (nle)^2. . (2) , , 3nkT ( ), l < D, D = sqrt(kT/(2 pi n e^2)) D - . , . , . , , . . - , , , , . . , , , .

58.2. . , , N, . N = 4/3 pi n D^3. : g = e^2 n^(1/3)/(kT) << 1 , .

N ~ g(-3/2) >> 1, .

, . . - : . - . , w = sqrt(4 pi e^2 n/m)

mx + 4 pi n e^2 x = 0

4 pi n e x - , x, sigma = nle, , .


59.

E = E_0 exp[i(kr - wt)] - , .

m d^2 r_E/ d t^2 = -e E_0 exp[r(kr - wt)]

.

_E = (_, _, z_E) .

_E = /(m w^2) exp[i(kr - wt)]

epsilon E = D = E + P

P = - n e r_E = - n e^2 / (mw^2) E

,

epsilon = 1 - w_p^2 / w^2

w_p - , ( , )



<== | ==>
. . . |
:


: 2017-03-18; !; : 314 |


:

:

, ,
==> ...

1456 - | 1418 -


© 2015-2024 lektsii.org - -

: 0.041 .