Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейные однородные дифференциальные уравнения




П.В. Столбов

Математика

Часть III

 

Утверждено редакционно-издательским

советом университета в качестве

учебного пособия

 

 

Нижний Новгород

ННГАСУ

 

ББК 22.1

С 81

 

 

Столбов П.В. Математика. Часть III [текст]: учебное пособие / П.В. Столбов; Нижегород. гос. архит.-строит. ун-т. – Н.Новгород: ННГАСУ, 2013. – 63 с.

ISBN 978-5-87941-880-0

 

 

Учебное пособие по математике предназначено для студентов всех специальностей и направлений.

 

 

ББК 22.1

 

 

ISBN 978-5-87941-880-0

 

© Столбов П.В., 2013

© ННГАСУ, 2013

 
§ 1. Дифференциальные уравнения первого порядка

В курсе математики средней школы изучались алгебраические уравнения, где неизвестными были числа. Сейчас мы переходим к рассмотрению так называемых дифференциальных уравнений, при решении которых находят неизвестные функции, удовлетворяющие заданным соотношениям, включающим операцию дифференцирования.

Рассмотрим для начала задачу о законе изменения скорости свободного падающего тела. Пусть тело массы падает с некоторой высоты. Учтем, что кроме силы тяжести, на него действует сила сопротивления воздуха. Запишем второй закон Ньютона

, (1.1)

предполагая, что сила сопротивления пропорциональна скорости в каждый момент времени с коэффициентом пропорциональности . Уравнение (1.1), кроме неизвестной функции , содержит еще и ее производную . Это и есть дифференциальное уравнение.

Дадим общие определения. Дифференциальным уравнением первого порядка называется уравнение

, (1.2)

связывающее независимую переменную и искомую функцию с ее первой производной . Если можно явно выразить через оставшиеся переменные уравнения (1.2), то оно приобретает вид

. (1.3)

Решением дифференциального уравнения (1.2) называется всякая функция , которая при подстановке в уравнение (1.2) обращает его в тождество.

Можно убедиться, в частности, что функция

(1.4)

при любом значении постоянной удовлетворяет уравнению (1.1). Действительно, подставляя функцию (1.4) и ее производную в (1.1), получим тождество. Это означает, что функция вида (1.4) является решением уравнения (1.1).

Заметим, что мы нашли бесконечно много функций, удовлетворяющих дифференциальному уравнению (1.1) – каждому значению постоянной соответствует свое решение вида (1.4).Множество функций , обращающих уравнение (1.3) в тождество, называют общим решением дифференциального уравнения (1.3). Запись общего решения содержит произвольную постоянную . Заметим, что решение дифференциального уравнения может быть записано и в неявном виде .

Допустим, что в рассматриваемой задаче известна скорость тела в начальный момент времени . Обозначим её . Чтобы определить, как будет изменяться скорость тела в дальнейшем, выделим из найденного множества решений (1.4) только одно - то, которое соответствует начальному условию . При и из множества решений (1.4) получим , откуда . Подставляя найденное значение постоянной в (1.4), получим закон изменения скорости падающего тела при заданном начальном условии :

. (1.5)

Согласно последнему равенству, скорость падающего тела при будет стремиться к величине . Отсюда, в частности, можно найти нужный коэффициент сопротивления (парашют), чтобы обеспечить приземление с допустимой скоростью. Функция (1.5) представляет собой так называемое частное решение уравнения (1.1), соответствующее начальному условию .

Частным решением уравнения (1.3) называется одна функция, удовлетворяющая самому уравнению и начальному условию. Задачу нахождения частного решения дифференциального уравнения (1.3), удовлетворяющего данному начальному условию , называют задачей Коши. Если правая часть уравнения (1.3) непрерывна в некоторой области, содержащей начальную точку , и имеет непрерывную в этой области частную производную , то задача Коши имеет единственное решение. При этих условиях частное решение получается из общего решения при конкретном значении произвольной постоянной .

Процесс отыскания решения дифференциального уравнения называется его интегрированием, а график решения – интегральной кривой. Рассмотрим геометрическую интерпретацию решений уравнения (1.3) на конкретном примере. Пусть требуется найти частное решение дифференциального уравнения

, (1.6)

удовлетворяющего начальному условию

. (1.7)

Непосредственной подстановкой убеждаемся, что функция вида

(1.8)

обращает уравнение (1.6) в тождество. Она содержит произвольную постоянную и является общим решением уравнения (1.6). Построив в плоскости графики этих функций при различных значениях . мы получим семейство парабол (См. рис.1).

Чтобы выделить из этого семейства интегральных кривых конкретную параболу, соответствующую условию (1.7), рассмотрим точку с координатами . Через нее проходит парабола семейства (1.8), для которой . Соответствующее решение является искомым частным решением.

Переходим к рассмотрению конкретных видов дифференциальных уравнений первого порядка и методов их решения.

Если правая часть дифференциального уравнения (1.3) может быть записана в виде произведения функций двух функций и , зависящих от переменных и соответственно, то есть , то уравнение называют дифференциальным уравнением с разделяющимися переменными.

Учитывая, что , перепишем последнее уравнение в виде

или .

Умножая обе части последнего уравнения на , получим вид уравнения , (1.9)

в котором каждая из переменных и находится в той части уравнения, где ее дифференциал. Считая известной функцией от , равенство (1.9) можно рассматривать как равенство двух дифференциалов и интегрировать обе части уравнения (1.9). Полученные при этом функции и будут отличаться постоянным слагаемым: . Мы записали соотношение, связывающее решение , независимую переменную и произвольную постоянную , это соотношение и представляет собой общее решение дифференциального уравнения (1.3).

Уравнение с разделяющимися переменными, записанное исходно в дифференциальной форме

,

решается аналогично.

 

Решим для примера дифференциальное уравнение

. (1.10)

Функцию в правой части уравнения можно представить в виде произведения и переписать уравнение (1.10):

или .

Умножая обе части последнего уравнения на функцию , получим . Интегрируя , находим , или , откуда – общее решение уравнения (1.10), где – произвольная постоянная.

Решим далее задачу Коши: найдем решение уравнения

, (1.11)

при условии, что

. (1.12)

Дифференциальное уравнение (1.11) с разделяющимися переменными запишем в виде

.

Умножая обе части последнего уравнения на , разделим переменные: .

Интегрируя , находим , или , где – произвольная постоянная.

Итак, общее решение уравнения (1.11) имеет вид

.

Учет начального условия (1.12) дает , откуда . Следовательно, решение задачи Коши записывается в виде

или .

Рассмотрим далее л инейные дифференциальные уравнения первого порядка, которые, по определению, имеют вид

. (1.13)

Решение уравнения (1.13) будем искать в виде произведения

(1.14)

двух неизвестных функций и , тогда

. (1.15)

Подставив в уравнение (1.13) вместо и равенства (1.14) и (1.15) соответственно, получим

,

или . (1.16)

Рассмотрение вместо одной неизвестной функции двух функций и дает возможность ввести для одной из них, в частности , дополнительное условие, которое упростит уравнение. Оно состоит в требовании обращения выражения в нуль, то есть

. (1.17)

Уравнение (1.17) является дифференциальным уравнением с разделяющимися переменными и . Его запишем в виде или . Умножая обе части последнего уравнения на , разделяем переменные: . Интегрируем

и находим одно из решений уравнения (1.17), например, при постоянной . Это решение обозначим . Для второй неизвестной функции из (1.16) получим уравнение . Снова разделяем переменные и, интегрируя, находим , где – произвольная постоянная.

Подставляя найденные и в функцию (1.14), получаем решение уравнения (1.13) в виде .

Найдем для примера общее решение уравнения

(1.18)

В нем по условию , . Подставив в уравнение и , получим ,

или . (1.19)

В качестве функции возьмем одно решение уравнения при значении . Перепишем его в виде , разделим переменные и, интегрируя , находим . При получим . (1.20)

Подставим функцию (1.20) в (1.19), получим или .

Снова разделяя переменные и интегрируя ,

находим , (1.21)

где – произвольная постоянная.

Подставляя найденные функции (1.20) и (1.21) в равенство , получим общее решение данного уравнения (1.18)

.

 

Линейные однородные дифференциальные уравнения

Второго порядка

Начнём с задачи из механики. Рассмотрим прямолинейное движение материальной точки массы по оси . Отклонение точки от положения равновесия будем определять функцией . Пусть движение происходит под действием трёх сил: силы, притягивающей точку к началу координат и имеющей проекцию на ось , равную , силы сопротивления среды, которую считаем пропорциональной первой степени скорости и возмущающей силы, направленной по оси и равной в момент времени .

Применяя второй закон Ньютона к движущейся массе, получим

.

Разделим обе части уравнения на и после введения новых обозначений , и приведем его к виду

. (2.1)

Полученное уравнение относится к классу так называемых линейных дифференциальных уравнений второго порядка, имеющих вид

. (2.2)

В них неизвестная функция и ее производные входят линейно. В качестве коэффициентов уравнения и могут рассматриваться любые функции, непрерывные в интервале . При этих условиях существует единственное решение уравнения (2.2), удовлетворяющее заданным начальным условиям .

Если правая часть уравнения (2.2) равна нулю:

, (2.3)

то оно называется однородным, в противном случае (если ) – неоднородным.

Уравнение вида (2.2) служит математической моделью разнообразных колебательных физических процессов, то есть процессов, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например, качания маятника часов, переменный электрический ток и т.д. При колебательном движении маятника или груза на пружине изменяется координата центра масс, в случае переменного тока колеблются напряжение и сила тока. Физическая природа колебаний может быть разной, однако они описываются сходными характеристиками и уравнениями одинакового типа. Математические модели, сводящиеся к линейному дифференциальному уравнению второго порядка с постоянными коэффициентами, называют линейным осциллятором.

Методика решений рассматриваемых уравнений базируется на следующем утверждении. Если и – два каких-либо непропорциональных друг другу решения уравнения (2.3), т.е. , то общее решение однородного дифференциального уравнения второго порядка имеет вид

,

где – произвольные постоянные. Следовательно, два любых непропорциональных решения однородного линейного дифференциального уравнения второго порядка формируют его общее решение. Однако нет общего метода отыскания функций и . Их легко найти в случае, когда коэффициенты уравнения (2.3) являются числами. Обозначим их и :

. (2.4)

Такое уравнение называется линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами. Его решения ищут в виде функций . Рассмотрим, например, уравнение

.

Подставив в него функцию , а также ее производные и , получим . Поскольку , функция будет решением, если – корень квадратного уравнения

,

которое называют характеристическим уравнением соответствующего дифференциального уравнения. Его корни и , поэтому непропорциональные функции и формируют общее решение этого уравнения . В общем виде характеристическое уравнение дифференциального уравнения (2.4) имеет вид

. (2.5)

Если , то уравнение (2.5) имеет два различных действительных корня и , которые определяются формулой

.

При этом непропорциональные решения уравнения и формируют общее решение уравнения (2.4) в виде

.

Рассмотрим дифференциальное уравнение . Его характеристическое уравнение имеет два одинаковых корня (в таком случае говорят, что – корень кратности два). Одно из решений в этом случае нам известно: . Непосредственной подстановкой в уравнение можно убедиться, что функция также будет решением этого уравнения. Поскольку полученные функции непропорциональны, общее решение дифференциального уравнения получается в виде .

В целом можно сказать, что если выполняется условие , то характеристическое уравнение (2.5) имеет кратный корень , а общее решение однородного дифференциального уравнения второго порядка имеет вид .

Если же характеристическое уравнение (2.5) имеет комплексные корни , то можно убедиться, что функции и образуют пару непропорциональных решений уравнения (2.4), а его общее решение имеет вид

.

Такая ситуация возникает, если , при этом , .

Рассмотрим, например, дифференциальное уравнение . Его характеристическое уравнение имеет комплексные корни , а общее решение, тем самым, приобретает вид . Для уравнения также составим характеристическое уравнение: . Его комплексные корни позволяют записать общее решение дифференциального уравнения в виде .

Вернёмся теперь к механическим колебаниям. Отсутствию возмущающей силы соответствует уравнение (2.1), в котором :

. (2.6)

Такое уравнение называется уравнением свободных колебаний. Характеристическое уравнение в этом случае имеет вид

. (2.7)

Свободные колебания в среде без сопротивления описываются уравнением . В этом случае характеристическое уравнение имеет мнимые корни , ему соответствует общее решение

Удобно привести записанное решение к другой форме, введя новые обозначения. Умножив и разделив на , получим

Если положить

,

то общее решение приобретает вид

.

Оно описывает движение, которое называют гармоническим колебанием. Его график имеет вид:

Величину называют амплитудой колебания, аргу­мент — фазой колебания, величину - начальной фазой колебания. Величина представляет собой частоту колебания. Напомним, что . Период коле­бания и частота k зависят только от массы системы и силы, притягивающей точку к началу координат. В задаче о движении тела, подвешенного на пружине, это означает зависимость от жесткости пружины.

Свободные колебания в среде с сопротивлением описываются уравнением (2.6). Если , то характеристическое уравнение (2.7) имеет два различных действительных корня . В модели движения груза на пружинке указанное условие означает, что сила сопротивления среды большесилы упругости пружины. Общее решение дифференциального уравнения в этом случае описывает апериодическое движение. Поскольку корни характеристического уравнения отрицательны, то с ростом координата стремится к нулю.

Характеристическое уравнение (2.7) имеет кратный корень , если , то есть . Для задачи о движении груза на пружине это означает, что сила сопротивления и сила упругости пружины «уравновешены» в смысле указанного равенства. Общее решение приобретает вид . При малых значениях основную «роль» играет первый множитель, линейный относительно , а затем с увеличением материальная точка будет стремиться к положению равновесия.

Если же (то есть - упругая сила пружины превосходит силу сопротивления среды в задаче о грузе на пружине), то характеристическое уравнение (2.7) имеет комплексные корни .

Общее решение

описывает затухающие гармонические колебания с периодом , частотой и амплитудой , убывающей с увеличением . Вид графика решения:

 

Проанализировав полученные результаты, можно сказать, что наличие сопротивления видоизменяет характер колебаний: пока сопротивление сравнительно невелико , движения остаются периодическими, затухая с увеличением , при большом сопротивлении среды движения становятся апериодическими.

 





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 389 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.