Требования к оформлению контрольных работ
1. Контрольные работы следует выполнять в ученических тетрадях в клетку. На обложке необходимо указать: название Университета; название и номер контрольной работы; название (номер) специальности; фамилию,имя, отчество и личный шифр студента.
2. На каждой странице надо оставить поля для оценки решения задач и методических указаний проверяющего работу.
3. Условия задач переписывать полностью необязательно, достаточно указать номер задачи по данному сборнику. В условия задач надо сначала подставить конкретные числовые значения параметров т и п, и только после этого приступать к их решению.
4. Задачи в контрольной работе нужно располагать в порядке возрастания номеров.
Формирование исходных данных к задачам
Каждая контрольная работа состоит из задач одного или нескольких разделов сборника.
Условия задач, входящих в контрольную работу, одинаковы для всех студентов, однако числовые данные задач зависят от личного шифра студента, выполняющего работу.
Числовых данных параметров т и п определяются по двум последним цифрам своего шифра (А — предпоследняя цифра, В — последняя цифра). Значение параметра т выбирается из таблицы 1, а значение параметра п - из таблицы 2. Эти два числа т и п и нужно подставить в условия задач контрольной работы.
Таблица 1 (выбор параметра т)
А | ||||||||||
т |
Таблица 2 (выбор параметра п)
В | ||||||||||
п |
Например, если шифр студента 1604 — 037, то А = 3, В = 7, и из таблиц находим, что т =4, п =1. Полученные т = 4 и п = 1 подставляются в условия всех задач контрольной работы этого студента.
Линейная алгебра
Действия с матрицами.
Выполнить действия:
а) ; б) .
Вычисление определителей.
Вычислить определитель двумя способами:
а) по правилу «треугольников»; б) разложением по строке.
Обратная матрица.
Найти обратную матрицу к матрице и проверить выполнение равенства .
Системы линейных уравнений.
Решить систему уравнений тремя способами: а) по формулам Крамера; б) методом Гаусса; в) с помощью вычисления обратной матрицы, записав систему в матричном виде :
Аналитическая геометрия
Прямая на плоскости.
Построить треугольник, вершины которого находятся в точках , , и найти:
1) координаты точки пересечения медиан;
2) длину и уравнение высоты, опущенной из вершины А;
3) площадь треугольника;
4) систему неравенств, задающих внутренность треугольника АВС.
Прямая и плоскость в пространстве.
Дана треугольная пирамида с вершинами в точках , , , ,. Найти:
a) уравнение плоскости, проходящей через точки А, В и С;
б) величину угла между ребром SC и гранью АВС;
в) площадь грани АВС;
г) уравнение высоты, опущенной из вершины S на грань АВС, и ее длину;
д) объем пирамиды SАВС.