Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Правила построения формул логики высказываний




Правило 1. Элементарное высказывание (буква) является формулой нулевого уровня. Если элементарное высказывание всегда верно, мы будем его обозначать буквой И (1), а если оно всегда неверно, - буквой Л (0). Тогда формулы первого уровня - это элементарные высказывания, к которым применена только одна логическая связка.

Правило 2. Пусть и - формулы ненулевого уровня. Тогда записи

, , , ,

также являются формулами. Если же одна из формул и , к которым применяется логическая связка, имеет нулевой уровень, то она в скобки не заключается.

Теперь, зная буквы - элементарные высказывания, мы никогда не ошибёмся, определяя, является ли формулой запись, содержащая эти буквы, скобки и символы связок, то есть правильно ли построено сложное высказывание. В процессе подобного опознавания мы выделяем части формулы, то есть более короткие формулы, из которых на каждом этапе строится более длинная формула с применением одной связки. Самыми простыми частями формулы являются, разумеется, элементарные высказывания. Значит, логический анализ формулы сводится к выделению всех её частей.

Пример 8. Пусть элементарными высказываниями являются А, В, С. Записи

и c формальной точки зрения не являются формулами, так как мы натыкаемся при их разборе на нарушение правил построения формул.

УПРАЖНЕНИЕ 1. Является ли формулой следующая запись:

а) ;

б) ;

в) ;

г) .

Воспользуемся рассмотренными средствами, чтобы поупражняться в переходе от обычных высказываний к формальной их записи.

Пример 9. В качестве исходного материала возьмём высказывания "ДУЕТ ВЕТЕР" и "ИДЕТ ДОЖДЬ". Тогда высказывание "НЕВЕРНО, ЧТО ВЕТЕР ДУЕТ ТОГДА И ТОЛЬКО ТОГДА, КОГДА ИДЕТ ДОЖДЬ" является сложным по отношению к исходным.

Обозначим буквой P высказывание "ДУЕТ ВЕТЕР", а буквой Q высказывание "ИДЕТ ДОЖДЬ". Тогда из сложного высказывания мы видим, что вначале было построено высказывание "ВЕТЕР ДУЕТ ТОГДА И ТОЛЬКО ТОГДА, КОГДА ИДЕТ ДОЖДЬ", а потом с его помощью путём применения связки НЕ ("НЕВЕРНО, ЧТО") - уже окончательное утверждение. Таким образом, нашему анализу соответствует формула:

 

УПРАЖНЕНИЕ 2. Выделяя более простые высказывания “ДИНАМО” ВЫИГРАЕТ, “СПАРТАК” ЗАЙМЕТ ВТОРОЕ МЕСТО и обозначая их логическими переменными А и В соответственно, записать с помощью формул сложные высказывания:

а) либо матч выиграет команда “ДИНАМО” и второе место займет команда “СПАРТАК”, либо “ДИНАМО” не выиграет, но второе место все же достанется “СПАРТАКУ”.

б) неверно, что либо матч выиграет “ДИНАМО” и второе место займет “СПАРТАК”, либо “ДИНАМО” не выиграет и второе месте не достанется “СПАРТАКУ”.

в) из того, что “ДИНАМО” проиграет не следует, что второе место не достанется “СПАРТАКУ”.

д) матч “ДИНАМО” не выиграет и “СПАРТАК” не займет второе место.

е) Если матч выиграет “ДИНАМО”, значит второе место займет “СПАРТАК”.

Вы заметили, как много скобок появляется при попытке записать обычные высказывания с помощью формул? Скобочный "частокол" затрудняет чтение формул. Вспомним, что в формуле школьной алгебры число скобок сокращается за счёт определённых приёмов. Например, деление чисел можно записывать, устраивая "многоэтажные" выражения, вводя в рассмотрение числитель и знаменатель дроби. Очень часто применяется метод старшинства операций: возведение в степень старше умножения, а умножение старше сложения в том смысле, что в бесскобочной записи а·b + c принято всегда первым выполнить умножение, а затем сложение. Лишь когда мы отклоняемся от установленного порядка выполнения операций, необходимо указать его, проставив скобки. Например, а·(b + c) сигнализирует о том, что сначала нужно выполнить младшую операцию (сложение), а потом старшую (умножение). Точно так же в логике высказываний были приняты соглашения о старшинстве логических связок: считается, что сильнее всех связывает высказывания связка "не", за ней идут "и", "или", "если...,то..." и, наконец, связка равносильности "... тогда и только тогда, когда...".





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 300 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

3370 - | 3062 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.