Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формулы численного дифференцирования.




Задача численного дифференцирования состоит в приближенном вычислении производных функции по заданным в конечном числе точек значениям этой функции. Пусть на задана сетка

и определены значения функции в точках сетки.

Простейшие примеры численного дифференцирования имеют вид:

, ,

Возникающая в результате такой замены погрешность характеризуется разложениями

, (3.35)

, (3.46)

, (3.37)

где , точки из интервала .

Вторую производную в точке можно заменить отношением (доказать, дом. зад. №4)

, (3.38)

Третья производная в точке с точностью до величин определяется по формуле (доказать, дом. зад. №4)

. (3.39)

Четвертая производная в точке аппроксимируется разностным отношением (доказать, дом. зад. №4)

.

Как правило, значения функции в точках сетки вычисляются неточно, а с каким-то приближением. Например, элементарные трансцендентные функции вычисляются с помощью рядов, причем ряды заменяются конечными суммами. Другим источником погрешностей являются погрешности округления. Оказывается, что погрешность, возникающая при вычислении разностных отношений, намного превосходит погрешность в задании значений функции и даже может неограниченно возрастать при стремлении шага сетки к нулю. Поэтому операцию вычисления разностных отношений называют некорректной. Поясним причину некорректости на примере вычисления разностного отношения .

Разностное отношение хорошо приближает только в том случае, когда шаг достаточно мал. Требование малости величины , находящейся в знаменателе разностного отношения, как раз и является причиной некорректности операции численного дифференцирования. Действительно, пусть вместо точных значений и вычислены приближенные значения , и . Тогда вместо будет вычислена величина . Следовательно, погрешность в вычислении первой разностной производной окажется равной .

Пусть известна граница погрешностей , т.е. , . Тогда

, (3.40)

причем эта оценка достигается при . Из оценки (3.40) видно, что вследствие малости погрешность, возникающая при вычислении первой разностной производной, значительно превосходит погрешность вычисления самой функции . Если не зависит от , то погрешность неограниченно возрастает при .

Сказанное не означает, что нельзя пользоваться формулами численного дифференцирования. Чтобы не происходило существенного понижения точности, надо следить за тем, чтобы погрешность округления имела тот же порядок, что и погрешность аппроксимации. Например, из (3.35) следует, что погрешность аппроксимации при замене отношением не превосходит величины , где . Естественно потребовать, чтобы и погрешность округления была бы сравнима с погрешностью аппроксимации, например

, (3.41)

где не зависит от . Это означает, что погрешность при вычислении значений функции должна быть величиной . С другой стороны, неравенство (3.41) показывает, что если величина задана и мы не можем ее менять, то вычисления надо проводить не с произвольно малым шагом , а с шагом, удовлетворяющим условию , где .

При вычислении производных более высокого порядка, когда в знаменатель разностного отношения входит , , влияние неточности в задании сказывается еще сильнее.

Многие формулы численного дифференцирования можно получить как следствие интерполяционных формул. Для этого достаточно заменить функцию ее интерполяционным многочленом и вычислить производные многочлена , используя его явное представление. В отличие от предыдущего, рассмотрим неравномерную сетку

и обозначим через , шаги этой сетки. В качестве примера получим формулы численного дифференцирования, основанные на использовании многочлена Лагранжа , построенного для функции по трем точкам . Многочлен имеет вид

,(3.42)

отсюда получим

Это выражение можно принять за приближенное значение в любой точке . Его удобнее записать в виде

, (3.43)

где . В частности, при получим

, (3.44)

и если сетка равномерна, то приходим к центральной разностной производной

.

Далее, вычисляя вторую производную многочлена , получим приближенное выражение для при :

. (3.45)

На равномерной сетке это выражение совпадает со второй разностной производной

.

Для приближенного вычисления дальнейших производных уже недостаточно многочлена , надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.

Порядок погрешности аппроксимации зависит как от порядка интерполяционного многочлена, так и от расположения узлов интерполирования. Получим выражение для погрешности аппроксимации, возникающей при замене выражением . Будем считать, что и что величины имеют один и тот же порядок малости при измельчении сетки. По формуле Тейлора в предположении ограниченности получим

,

где , . Отсюда приходим к следующим разложениям разностных отношений (доказать, дом. зад. №4):

,(3.46)

,(3.47)

где Подставляя (3.46) и (3.47) в выражение для разностной производной (3.43) и приводя подобные члены, получим (доказать, дом. зад. №4):

, .

Отсюда видно, что разностное выражение (3.43) аппроксимирует со вторым порядком. Несколько хуже обстоит дело с выражением (3.45), аппроксимирующим вторую производную. Из (3.38) видно, что на равномерной сетке в точке имеет место аппроксимация . Покажем, что на неравномерной сетке погрешность аппроксимации будет иметь только первый порядок. Подставляя разложения (3.46) и (3.47) в выражение (3.45) для получим (доказать, дом. зад. №4):

, .

На равномерной сетке второй порядок аппроксимации имеет место лишь в точке , а относительно других точек (например, точек и ) выполняется аппроксимация только первого порядка.





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 728 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.