Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Контур с активным сопротивлением




Колебания и волны

Колебательным движением или колебанием называются движения или процессы, которые характеризуются повторяемостью во времени тех или иных значений физических величин.

Колебательные процессы широко распространены в природе и технике и представляют собой сложные процессы. Физическая природа может быть разной, поэтому различаются: механические, электромагнитные и т.д., но различные колебательные процессы описываются одинаковыми характеристиками и однотипными уравнениями.

 

МЕХАНИЧЕСКИЕ ЭЛЕКТРОМАГНИТНЫЕ
Масса m Индуктивность L
Жесткость k Величина, обратная электроемкости 1/C
Смещение (координата) x Заряд конденсатора q (t)
Скорость v = dx/dt Ток в цепи I = dq/dt
Ускорение a = d2x/dt2 Скорость изменения тока d2q/dt2
Импульс Р = m v Магнитный поток Ф = LI
Сила (упругая F = kx) F Напряжение U = q/C
Частота свободных колебаний  
Период -формула Томпсона
Кинетическая энергия Магнитная энергия катушки
Потенциальная энергия деформации (пружина) Энергия электрического поля (конденсатора)  
Дифференциальные уравнения гармонических колебаний
решением этих уравнений являются выражения:
х = А sin (ω0t + φ0) q = q0 sin (ω0t + φ0)
Уравнения затухающих колебаний:
решением этих уравнений являются выражения:
x(t) = x0e-βt cos (ωt + φ0) q(t) = q0 e-βt cos (ωt + φ0)
Коэффициент затухания β = r/2m β = R/2L
Коэффициент сопротивления r R
Уравнения вынужденных колебаний:
х = А sin (ωt - φ0) q = q0 сos (ωt - φ0)
Добротность пружинного маятника Добротность колебательного контура
     

Для возбуждения и поддерживания электромагнитных колебаний используется колебательный контур – это цепь, состоящая из последовательно соединенных: катушки, конденсатора и сопротивления.

 

При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:

Все реальные контуры содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими (рис.1).

Рисунок 1. Затухающие колебания в контуре.

Таким образом, затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Затухание механических колебаний вызывается трением; в электрических колебательных системах – тепловыми потерями на активном сопротивлении R, а также потерями в диэлектриках и ферромагнетиках, вследствие гистерезиса.

Отношение амплитуд двух последующих затуханий называется декрементом затухания, а логарифм – логарифмическим декрементом затухания:

Ne – число колебаний, совершаемых за время уменьшения амплитуды в е раз.

Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: F тр = – rυ. Коэффициент r в этой формуле аналогичен сопротивлению R в электрическом контуре. сопротивления R контура. Интервал времени, в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания.

 

Колебания, возникающие под действием внешней периодически изменяющейся силы или э.д.с., называются вынужденными колебаниями.

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний w0 к частоте, равной или близкой к собственной частоте колебательной системы, называется резонансом. Резонансная частота равна

Где b = R/2L. При b 2 << w02 значение wрез практически совпадает с собственной частотой колебательной системы.

Добротность характеризует резонансные свойства колебательной системы, чем больше Q, тем больше Арез. (Чем меньше затухание, тем больше добротность Q).

Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:

 

 

 

Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен.

Переменный ток

 

Электрический ток, величина и направление которого изменяется во времени называется переменным.

В сеть с переменным напряжением, изменяющимся по закону , включают следующие элементы: активное сопротивление R, катушку индуктивности L, электроемкость C. Рассматриваемый контур может содержать как один элемент, так и группу элементов. В последнем случае опишем случаи последовательного и параллельного соединения элементов.

В этой теме строчными буквами обозначены мгновенные значения напряжения u, тока i, мощности p; прописными буквами с нижним индексом m – амплитудные значение соответствующих величин (Um, Im, Pm); прописными буквами без индекса – эффективные значения напряжения и тока , а также среднюю мощность переменного тока P.

Для мгновенных значений выполняются законы постоянного тока – закон Ома, правила Кирхгофа и закон Джоуля-Ленца. Требуется найти связь между амплитудными значениями тока и напряжения в рассматриваемом контуре, а также сдвиг фаз между током и напряжением.

Контур с активным сопротивлением

 

Применим II правило Кирхгофа: , откуда мгновенное значение силы тока , или . Следовательно,

, .

Условие означает, что ток и напряжение в одни и те же моменты времени принимают максимальные значения, в одни и те же моменты времени равны нулю. Зависимость тока и напряжения на активном сопротивлении изображены на графике.

Контур с электроемкостью

 

Применим II правило Кирхгофа: Из определения электроемкости следует, что Учитывая определение силы тока получим зависимость мгновенного значения силы тока от времени:

, или . Следовательно,

, .

Формулу можно записать в виде

,

который можно интерпретировать как закон Ома для участка цепи с электроемкостью. Здесь представляет емкостное сопротивление.

Условие означает, что синусоиды, изображающие зависимости силы тока и напряжения от времени, сдвинуты относительно друг друга на четверть периода, то есть ток по фазе опережает напряжение на .

Зависимость тока и напряжения на конденсаторе изображены на графике.

Контур с индуктивностью

 

При протекании по катушке переменного тока в ней возникает ЭДС самоиндукции Применим II правило Кирхгофа: , или . Из этого выражения следует, что

.

Интегрируя это уравнение, получим зависимость мгновенного значения силы тока от времени:

, или . Следовательно,

, .

Формулу можно записать в виде

,

который можно интерпретировать как закон Ома для участка цепи с индуктивностью. Здесь представляет индуктивное сопротивление.

Условие означает, что синусоиды, изображающие зависимости силы тока и напряжения от времени, сдвинуты относительно друг друга на четверть периода, то есть напряжение по фазе опережает ток на .

Зависимость тока и напряжения на индуктивности изображены на графике.

Емкостное и индуктивные сопротивления называют реактивными, сопротивление R - активным сопротивлением.

Реактивное сопротивление измеряют в тех же единицах, что и активное. Но между ними существует и принципиальное различие, а именно: только активное сопротивление определяет необратимые процессы в цепи, такие например, как преобразование электромагнитной энергии в джоулеву теплоту.





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 403 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.