Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Простейшие свойства групп.




17.
В любой группе выполняется закон сокращения: (левый закон сокращения; аналогично, имеет место и правый закон). Доказательство. Домножим равенство слева на и воспользуемся свойством ассоциативности: .

18.
Признак нейтрального элемента:


Доказательство Применим к равенству закон сокращения.

 

19.
Признак обратного элемента:


Доказательство: Применим закон сокращения к равенству .

 

20.
Единственность обратного элемента. Обратный элемент определен однозначно. Следует из п.3.

21.
Существование обратной операции. Для любых двух элементов произвольной группы G уравнение имеет и притом единственное решение. Доказательство Непосредственно проверяется, что (левое частное элементов ) является решением указанного уравнения. Единственность вытекает из закона сокращения, примененного к равенству . Аналогично устанавливается существование и единственность правого частного.

Изоморфизм групп.

Определение.

Отображение двух групп G и K называется изоморфизмом, если

1.Отображение взаимно однозначно. 2.Отображение сохраняет операцию: .

Поскольку отображение обратное к также является изоморфизмом, введенное понятие симметрично относительно групп G и K, которые называются изоморфными.

Примеры.

1.Группы поворотов плоскости и вокруг точек и изоморфны между собой. Аналогично, изоморфными будут и группы, состоящие из поворотов пространства относительно любых двух осей.

2.Группа диэдра и соответствующая пространственная группа изоморфны.

22.
Группа тетраэдра T изоморфна группе состоящей из четных подстановок четвертой степени. Для построения изоморфизма достаточно занумеровать вершины тетраэдра цифрами 1,2,3,4 и заметить, что каждый поворот, совмещающий тетраэдр с собой некоторым образом переставляет его вершины и, следовательно, задает некоторую подстановку множества{1,2, 3, 4} Повороты вокруг оси, проходящей через некоторую вершину (например 1), оставляет символ 1 на месте и циклически переставляет символы 1, 2, 3. Все такие перестановки - четные. Поворот вокруг оси, соединяющей середины ребер (например, 12 и 34) переставляет символы 1 и 2, а также 3 и 4. Такие перестановки также являются четными.

23.
Формула определяет взаимно однозначное соответствие между множеством R вещественных чисел и множеством положительных чисел. При этом . Это означает, что является изоморфизмом.


Замечание. В абстрактной алгебре изоморфные группы принято считать одинаковыми. По существу это означает, что игнорируются индивидуальные свойства элементов группы и происхождение алгебраической операции.


5.Понятие подгруппы.

Непустое подмножество называется подгруппой, если само является группой. Более подробно это означает, что , и .

Признак подгруппы.

Непустое подмножество будет подгруппой тогда и только тогда, когда .

Доказательство.

В одну сторону это утверждение очевидно. Пусть теперь - любой элемент. Возьмем в признаке подгруппы. Тогда получим . Теперь возьмем . Тогда получим .

Примеры подгрупп.

 

24.
Для групп преобразований новое и старое понятие подгруппы равносильны между собой.

25.
- подгруппа четных подстановок.

26.

27.
и т.д.

28.
Пусть G - любая группа и - любой фиксированный элемент. Рассмотрим множество всевозможных степеней этого элемента. Поскольку , рассматриваемое множество является подгруппой. Она называется циклической подгруппой с образующим элементом g.

29.
Пусть любая подгруппа Рассмотрим множество - централизатор подгруппы H в группе G. Из определения вытекает, что если , то , то есть . Теперь ясно, что если , то и и значит централизатор является подгруппой. Если группа G коммутативна, то . Если G=H, то централизатор состоит из тех элементов, которые перестановочны со всеми элементами группы; в этом случае он называется центром группы G и обозначается Z(G).


Замечание об аддитивной форме записи группы.

Иногда, особенно когда операция в группе коммутативна, она обозначается (+) и называется сложением. В этом случае нейтральный элемент называется нулем и удовлетворяет условию: g+0=g. Обратный элемент в этом случае называется противоположным и обозначается (-g). Степени элемента g имеют вид g+g+...+g, называются кратными элемента g и обозначаются ng.


6. Реализация абстрактной группы как группы преобразований.

Существует несколько способов связать с данной абстрактной группой некоторую группу преобразований. В дальнейшем, если не оговорено противное, знак алгебраической операции в абстрактной группе будет опускаться.

Пусть некоторая подгруппа.

А) Для каждого определим отображение (левый сдвиг на элемент h) формулой .

Теорема 1

 

30.

31.
Множество L(H,G)= является группой преобразований множества G.

32.
Соответствие: является изоморфизмом групп H и L(H,G).


Доказательство.

 

33.
Надо проверить, что отображение взаимно однозначно для всякого . Если , то по закону сокращения. Значит инъективно. Если любой элемент, то и так что к тому же и сюръективно.

34.
Обозначим через операцию композиции в группе Sym(G) взаимно однозначных отображений . Надо проверить, что и . Пусть любой элемент. Имеем: ; и значит, .

35.
Пусть . Надо проверить, что l взаимно однозначно и сохраняет операцию. По построению l сюръективно. Инъективность вытекает из закона правого сокращения: . Сохранение операции фактически уже было установлено выше: .


Следствие.

Любая абстрактная группа изоморфна группе преобразований некоторого множества (Достаточно взять G=H и рассмотреть левые сдвиги).

Для случая конечных групп получается теорема Кэли:

Любая группа из n элементов изоморфна подгруппе группы подстановок степени n.

 

36.
Для каждого определим отображение (правый сдвиг на элемент h) формулой .


Теорема B.

 

37.
.

38.
Множество является группой преобразований множества G.

39.
Соответствие является изоморфизмом групп H и R(H,G).


Доказательство теоремы B вполне аналогично доказательству теоремы A. Отметим только, что . Именно поэтому в пункте 3 теоремы В появляется не , а .

С) Для каждого определим (сопряжение или трансформация элементом h) формулой .

Теорема С.

 

40.
Каждое отображение является изоморфизмом группы G с собой (автоморфизмом группы G).

41.
Множество является группой преобразований множества G.

42.
Отображение сюръективно и сохраняет операцию.


Доказательство.

 

43.
Поскольку , отображение взаимно однозначно как композиция двух отображений такого типа. Имеем: и потому сохраняет операцию.

44.
Надо проверить, что и . Оба равенства проверяются без труда.

45.
Сюръективность отображения имеет место по определению. Сохранение операции уже было проверено в пункте 2.


Замечание об инъективности отображения.

В общем случае отображение не является инъективным. Например, если группа H коммутативна, все преобразования будут тождественными и группа тривиальна. Равенство означает, что или (1) В связи с этим удобно ввести следующее определение: множество называется централизатором подгруппы . Легко проверить, что централизатор является подгруппой H. Равенство (1) означает, что . Отсюда вытекает, что если централизатор подгруппы H в G тривиален, отображение является изоморфизмом.


46.
Смежные классы; классы сопряженных элементов.


Пусть, как и выше, некоторая подгруппа. Реализуем H как группу L(H,G) левых сдвигов на группе G. Орбита называется левым смежным классом группы G по подгруппе H. Аналогично, рассматривая правые сдвиги, приходим к правым смежным классам .Заметим, что стабилизатор St(g, L(H,G)) (как и St(g, R(H,G))) тривиален поскольку состоит из таких элементов , что hg=g . Поэтому, если группа H конечна, то все левые и все правые смежные классы состоят из одинакового числа элементов, равного .

Орбиты группы называются классами сопряженных элементов группы G относительно подгруппы H и обозначаются Если G=H, говорят просто о классах сопряженных элементов группы G. Классы сопряженных элементов могут состоять из разного числа элементов. Это число равно , где Z(H,g) подгруппа H, состоящая из всех элементов h перестановочных с g.

Пример.

Пусть - группа подстановок степени 3. Занумеруем ее элементы: =(1,2,3); =(1,3,2); =(2,1,3); =(2,3,1); =(3,1,2); =(3,2,1). Пусть . Легко проверить, что левые смежные классы суть:

, , .

Правые смежные классы:

, , .

Все эти классы состоят из 2 элементов.

Классы сопряженных элементов G относительно подгруппы H:

, , , .

В то же время,

, , .

Теорема Лагранжа.

Пусть H подгруппа конечной группы G. Тогда порядок H является делителем порядка G.

Доказательство.

По свойству орбит G представляется в виде объединения непересекающихся смежных классов: . Поскольку все смежные классы состоят из одинакового числа элементов, , откуда и вытекает теорема.

Замечание. Число s левых (или правых) смежных классов называется индексом подгруппы .

Следствие.

Две конечные подгруппы группы G порядки которых взаимно просты пересекаются только по нейтральному элементу.

В самом деле, если эти подгруппы, то их общая подгруппа и по теореме Лагранжа - общий делитель порядков H и K то есть 1.

47.
Нормальные подгруппы. Факторгруппы.


Пусть любая подгруппа и -любой элемент. Тогда также является подгруппой G притом изоморфной H, поскольку отображение сопряжения является изоморфизмом. Подгруппа называется сопряженной по отношению к подгруппе H.

Определение.

Подгруппа H называется инвариантной или нормальной в группе G, если все сопряженные подгруппы совпадают с ней самой: .

Равенство можно записать в виде Hg = gH и таким образом, подгруппа инвариантна в том и только в том случае, когда левые и правые смежные классы по этой подгруппе совпадают.

Примеры.

 

48.
В коммутативной группе все подгруппы нормальны, так как отображение сопряжения в такой группе тождественно.

49.
В любой группе G нормальными будут, во первых, тривиальная подгруппа и, во вторых, вся группа G. Если других нормальных подгрупп нет, то G называется простой.

50.
В рассмотренной выше группе подгруппа не является нормальной так как левые и правые смежные классы не совпадают. Сопряженными с H будут подгруппы и .

51.
Если - любая подгруппа, то ее централизатор Z = Z(H,G) - нормальная подгруппа в G, так как для всех ее элементов z . В частности, центр Z(G) любой группы G -нормальная подгруппа.

52.
Подгруппа H индекса 2 нормальна. В самом деле, имеем 2 смежных класса: H и Hg = G-H = gH.


Теорема (свойство смежных классов по нормальной подгруппе).

Если подгруппа H нормальна в G, то множество всевозможных произведений элементов из двух каких либо смежных классов по этой подгруппе снова будет одним из смежных классов, то есть .

Доказательство.

Очевидно, что для любой подгруппы H .Но тогда

= = = .

Таким образом, в случае нормальной подгруппы H определена алгебраическая операция на множестве смежных классов. Эта операция ассоциативна поскольку происходит из ассоциативного умножения в группе G. Нейтральным элементом для этой операции является смежный класс . Поскольку , всякий смежный класс имеет обратный. Все это означает, что относительно этой операции множество всех (левых или правых) смежных классов по нормальной подгруппе является группой. Она называется факторгруппой группы G по H и обозначается G/H. Ее порядок равен индексу подгруппы H в G.


26. При́знак дели́мости — алгоритм, позволяющий сравнительно быстро определить, является ли число кратным заранее заданному[1]. Если признак делимости позволяет выяснить не только делимость числа на заранее заданное, но и остаток от деления, то его называют признаком равноостаточности.

Как правило, признаки делимости применяются при ручном счёте и для чисел, представленных в конкретной позиционной системе счисления (обычно десятичной).

Ризнак делимости на 2

Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3 (так как все числа вида 10n приделении на 3 дают в остатке единицу).

Признак делимости на 4

Число делится на 4 тогда и только тогда, когда число из двух последних его цифр (оно может бытьдвузначным, однозначным или нулём) делится на 4.

Признак делимости на 5

Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6

Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3.

Признак делимости на 7

Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этогочисла без последней цифры делится на 7 (например, 364 делится на 7, так как 36 — (2 × 4) = 28 делится на7).

Либо использовать модификацию признака деления на 1001=10³+1, которое само делится на 7:
Для того, чтобы натуральное число делилось на 7 необходимо и достаточно, чтобы алгебраическая суммачисел, образующих нечётные группы по три цифры (начиная с единиц) взятых со знаком «+» и чётных сознаком «-» делилась на семь.

Ещё один признак - берём первую цифру, умножаем на 3, прибавляем следующую (здесь можно взятьостаток от деления на 7 от получившегося числа). И далее - сначала: умножаем на 3, прибавляемследующую... Для 364: 3 * 3 + 6 = 15. Остаток - 1. Далее 1 * 3 + 4 = 7.

Признак делимости на 8

Число делится на 8 тогда и только тогда, когда три его последние цифры — нули или образуют число,которое делится на 8.

Признак делимости на 9

Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10

Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11

Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками равна 0 или делитсяна 11 (то есть 182 919 делится на 11, так как 1 — 8 + 2 — 9 + 1 — 9 = −22 делится на 11) — следствие факта,что все числа вида 10n при делении на 11 дают в остатке (-1)n.

Признак делимости на 12

Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13

Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числомединиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 × 5) = 104 делится на 13).

Признак делимости на 14

Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15

Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17

Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 разчислом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34.Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенноезначение в математике. Есть способ немного проще — число делится на 17 тогда и только тогда, когдаразность между числом его десятков и упятерённым числом единиц кратна 17 (например, 32952→3295-10=3285→328-25=303→30-15=15; поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19

Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц,кратно 19 (например, 646 делится на 19, так как 64 + (6 × 2) = 76 делится на 19).

Признак делимости на 23

Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков иединиц, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414; продолжаем: 4 + (3 * 14) =46 — очевидно, делится на 23).

Признак делимости на 25

Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют00, 25, 50 или 75).

Признак делимости на 99

Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) инайдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда,когда само число делится на 99.

Признак делимости на 101

Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) инайдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признак делимости на 2 n

Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними nцифрами, делится на ту же степень.

Признак делимости на 5 n

Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними nцифрами, делится на ту же степень.

Признак делимости на 10 n − 1

Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) инайдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n − 1 тогда и только тогда,когда само число делится на 10 n − 1.

Признак делимости на 10 n

Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр — нули.

Признак делимости на 10 n + 1

Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) инайдем сумму этих групп с переменными знаками, считая их n-числами. Эта сумма делится на 10 n + 1 тогдаи только тогда, когда само число делится на 10 n + 1.

 





Поделиться с друзьями:


Дата добавления: 2017-03-11; Мы поможем в написании ваших работ!; просмотров: 1096 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.